Properties

Label 216384.bd
Number of curves $6$
Conductor $216384$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("216384.bd1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 216384.bd

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
216384.bd1 216384hm5 [0, -1, 0, -248164289, 1504792275393] [2] 37748736  
216384.bd2 216384hm4 [0, -1, 0, -55551169, -159340362047] [2] 18874368  
216384.bd3 216384hm3 [0, -1, 0, -15912129, 22233837249] [2, 2] 18874368  
216384.bd4 216384hm2 [0, -1, 0, -3619009, -2266350911] [2, 2] 9437184  
216384.bd5 216384hm1 [0, -1, 0, 395071, -195888447] [2] 4718592 \(\Gamma_0(N)\)-optimal
216384.bd6 216384hm6 [0, -1, 0, 19650111, 107490751425] [2] 37748736  

Rank

sage: E.rank()
 

The elliptic curves in class 216384.bd have rank \(0\).

Modular form 216384.2.a.bd

sage: E.q_eigenform(10)
 
\( q - q^{3} - 2q^{5} + q^{9} + 4q^{11} - 2q^{13} + 2q^{15} + 6q^{17} + 4q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrrrr} 1 & 8 & 2 & 4 & 8 & 4 \\ 8 & 1 & 4 & 2 & 4 & 8 \\ 2 & 4 & 1 & 2 & 4 & 2 \\ 4 & 2 & 2 & 1 & 2 & 4 \\ 8 & 4 & 4 & 2 & 1 & 8 \\ 4 & 8 & 2 & 4 & 8 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.