Properties

Label 2160.g
Number of curves $1$
Conductor $2160$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("g1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 2160.g1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - T + 7 T^{2}\) 1.7.ab
\(11\) \( 1 + 2 T + 11 T^{2}\) 1.11.c
\(13\) \( 1 + 5 T + 13 T^{2}\) 1.13.f
\(17\) \( 1 - 4 T + 17 T^{2}\) 1.17.ae
\(19\) \( 1 - 5 T + 19 T^{2}\) 1.19.af
\(23\) \( 1 + 2 T + 23 T^{2}\) 1.23.c
\(29\) \( 1 + 10 T + 29 T^{2}\) 1.29.k
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 2160.g do not have complex multiplication.

Modular form 2160.2.a.g

Copy content sage:E.q_eigenform(10)
 
\(q - q^{5} + q^{7} - 2 q^{11} - 5 q^{13} + 4 q^{17} + 5 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 2160.g

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2160.g1 2160a1 \([0, 0, 0, 12, 12]\) \(27648/25\) \(-172800\) \([]\) \(192\) \(-0.30766\) \(\Gamma_0(N)\)-optimal