Properties

Label 212160hb
Number of curves $2$
Conductor $212160$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("hb1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 212160hb have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(5\)\(1 - T\)
\(13\)\(1 - T\)
\(17\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(11\) \( 1 + 2 T + 11 T^{2}\) 1.11.c
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 212160hb do not have complex multiplication.

Modular form 212160.2.a.hb

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - q^{5} - 4 q^{7} + q^{9} - 2 q^{11} + q^{13} + q^{15} + q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 212160hb

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
212160.c2 212160hb1 \([0, -1, 0, -16341, 569205]\) \(471287826743296/138654433125\) \(141982139520000\) \([2]\) \(737280\) \(1.4214\) \(\Gamma_0(N)\)-optimal
212160.c1 212160hb2 \([0, -1, 0, -98961, -11509839]\) \(6541847063933776/272710546875\) \(4468089600000000\) \([2]\) \(1474560\) \(1.7680\)