Properties

Label 212160.gx
Number of curves $4$
Conductor $212160$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("gx1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 212160.gx

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
212160.gx1 212160r3 \([0, 1, 0, -249985, 48024575]\) \(26362547147244676/244298925\) \(16010374348800\) \([2]\) \(1179648\) \(1.6974\)  
212160.gx2 212160r2 \([0, 1, 0, -15985, 709775]\) \(27572037674704/2472575625\) \(40510679040000\) \([2, 2]\) \(589824\) \(1.3508\)  
212160.gx3 212160r1 \([0, 1, 0, -3485, -67725]\) \(4572531595264/776953125\) \(795600000000\) \([2]\) \(294912\) \(1.0042\) \(\Gamma_0(N)\)-optimal
212160.gx4 212160r4 \([0, 1, 0, 18015, 3354975]\) \(9865576607324/79640206425\) \(-5219300568268800\) \([2]\) \(1179648\) \(1.6974\)  

Rank

sage: E.rank()
 

The elliptic curves in class 212160.gx have rank \(1\).

Complex multiplication

The elliptic curves in class 212160.gx do not have complex multiplication.

Modular form 212160.2.a.gx

sage: E.q_eigenform(10)
 
\(q + q^{3} + q^{5} + q^{9} + 4q^{11} - q^{13} + q^{15} + q^{17} - 8q^{19} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.