Learn more

Refine search


Results (1-50 of 61 matches)

Next   Download to        
Curve Isogeny class
LMFDB label Cremona label LMFDB label Cremona label Weierstrass coefficients Rank Torsion structure
21175.a1 21175y1 21175.a 21175y $[0, 0, 1, -996875, -383097344]$ $0$ trivial
21175.b1 21175e1 21175.b 21175e $[0, 0, 1, -4824875, 4079220516]$ $1$ trivial
21175.c1 21175bm1 21175.c 21175bm $[0, 0, 1, -15125, 623906]$ $0$ trivial
21175.d1 21175bn2 21175.d 21175bn $[0, 1, 1, -448708, -116419506]$ $0$ trivial
21175.d2 21175bn1 21175.d 21175bn $[0, 1, 1, 5042, 194244]$ $0$ trivial
21175.e1 21175j1 21175.e 21175j $[1, -1, 1, -7305, 110322]$ $0$ trivial
21175.f1 21175bg1 21175.f 21175bg $[1, -1, 1, 264120, -8999328]$ $1$ trivial
21175.g1 21175u1 21175.g 21175u $[1, 1, 1, -63, 166]$ $1$ trivial
21175.h1 21175m1 21175.h 21175m $[1, 1, 1, -4298, -114564]$ $0$ trivial
21175.i1 21175i4 21175.i 21175i $[1, -1, 1, -31056730, -66608718228]$ $0$ $[2]$
21175.i2 21175i3 21175.i 21175i $[1, -1, 1, -2107480, -851328728]$ $0$ $[2]$
21175.i3 21175i2 21175.i 21175i $[1, -1, 1, -1941105, -1040330728]$ $0$ $[2, 2]$
21175.i4 21175i1 21175.i 21175i $[1, -1, 1, -110980, -19120978]$ $0$ $[2]$
21175.j1 21175l2 21175.j 21175l $[1, -1, 1, -201730, 33393022]$ $0$ $[2]$
21175.j2 21175l1 21175.j 21175l $[1, -1, 1, -35355, -1878478]$ $0$ $[2]$
21175.k1 21175bk1 21175.k 21175bk $[1, 0, 0, -190638, -32032483]$ $0$ trivial
21175.l1 21175bf1 21175.l 21175bf $[1, 0, 0, -888, 10517]$ $1$ trivial
21175.m1 21175bc2 21175.m 21175bc $[1, 1, 1, -3533263, -2417958344]$ $1$ $[2]$
21175.m2 21175bc1 21175.m 21175bc $[1, 1, 1, 172362, -157527094]$ $1$ $[2]$
21175.n1 21175n2 21175.n 21175n $[1, 1, 1, -53963, 471406]$ $0$ $[2]$
21175.n2 21175n1 21175.n 21175n $[1, 1, 1, 13412, 67156]$ $0$ $[2]$
21175.o1 21175v2 21175.o 21175v $[1, 1, 1, -166438, -25788344]$ $1$ $[2]$
21175.o2 21175v1 21175.o 21175v $[1, 1, 1, -63, -1164844]$ $1$ $[2]$
21175.p1 21175bl2 21175.p 21175bl $[1, 1, 1, -157968, 24099956]$ $0$ $[2]$
21175.p2 21175bl1 21175.p 21175bl $[1, 1, 1, -9743, 383956]$ $0$ $[2]$
21175.q1 21175bd1 21175.q 21175bd $[1, -1, 1, -35355, -1146428]$ $1$ trivial
21175.r1 21175o1 21175.r 21175o $[1, -1, 1, 54570, 825322]$ $0$ trivial
21175.s1 21175z2 21175.s 21175z $[0, 1, 1, -215783, 38508894]$ $1$ trivial
21175.s2 21175z1 21175.s 21175z $[0, 1, 1, -4033, -8431]$ $1$ trivial
21175.t1 21175q1 21175.t 21175q $[0, -1, 1, -270233, -53980257]$ $1$ trivial
21175.t2 21175q2 21175.t 21175q $[0, -1, 1, -149233, -102546632]$ $1$ trivial
21175.t3 21175q3 21175.t 21175q $[0, -1, 1, 1333017, 2655179493]$ $1$ trivial
21175.u1 21175r3 21175.u 21175r $[0, -1, 1, -397283, 100957218]$ $1$ trivial
21175.u2 21175r1 21175.u 21175r $[0, -1, 1, -4033, -108032]$ $1$ trivial
21175.u3 21175r2 21175.u 21175r $[0, -1, 1, 26217, 270093]$ $1$ trivial
21175.v1 21175s2 21175.v 21175s $[0, -1, 1, -5394583, 4824400943]$ $1$ trivial
21175.v2 21175s1 21175.v 21175s $[0, -1, 1, -100833, -852182]$ $1$ trivial
21175.w1 21175f1 21175.w 21175f $[0, 0, 1, 6050, -41594]$ $0$ trivial
21175.x1 21175x1 21175.x 21175x $[1, -1, 0, 2183, 6166]$ $0$ trivial
21175.y1 21175t1 21175.y 21175t $[1, -1, 0, -883867, -144187334]$ $1$ trivial
21175.z1 21175bb2 21175.z 21175bb $[1, 0, 1, -3949201, 3020392923]$ $1$ $[2]$
21175.z2 21175bb1 21175.z 21175bb $[1, 0, 1, -243576, 48481673]$ $1$ $[2]$
21175.ba1 21175h2 21175.ba 21175h $[1, 0, 1, -155851, -21873777]$ $0$ $[2]$
21175.ba2 21175h1 21175.ba 21175h $[1, 0, 1, 10524, -1576027]$ $0$ $[2]$
21175.bb1 21175bi2 21175.bb 21175bi $[1, 0, 1, -141331, -19343667]$ $0$ $[2]$
21175.bb2 21175bi1 21175.bb 21175bi $[1, 0, 1, 6894, -1260217]$ $0$ $[2]$
21175.bc1 21175b1 21175.bc 21175b $[1, 1, 0, -35, 70]$ $1$ trivial
21175.bd1 21175g1 21175.bd 21175g $[1, 1, 0, -7625, -259310]$ $0$ trivial
21175.be1 21175a2 21175.be 21175a $[1, -1, 0, -1667, -24634]$ $1$ $[2]$
21175.be2 21175a1 21175.be 21175a $[1, -1, 0, -292, 1491]$ $1$ $[2]$
Next   Download to