# Properties

 Label 2112j Number of curves 2 Conductor 2112 CM no Rank 0 Graph

# Related objects

Show commands for: SageMath
sage: E = EllipticCurve("2112.a1")

sage: E.isogeny_class()

## Elliptic curves in class 2112j

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
2112.a1 2112j1 [0, -1, 0, -32065, -2199359] [2] 5376 $$\Gamma_0(N)$$-optimal
2112.a2 2112j2 [0, -1, 0, -31905, -2222559] [2] 10752

## Rank

sage: E.rank()

The elliptic curves in class 2112j have rank $$0$$.

## Modular form2112.2.a.a

sage: E.q_eigenform(10)

$$q - q^{3} - 4q^{5} - 2q^{7} + q^{9} + q^{11} + 4q^{15} - 6q^{17} - 4q^{19} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the Cremona numbering.

$$\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with Cremona labels.