Properties

Label 2112g
Number of curves 4
Conductor 2112
CM no
Rank 0
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("2112.m1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 2112g

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
2112.m4 2112g1 [0, -1, 0, 3, 45] [2] 384 \(\Gamma_0(N)\)-optimal
2112.m3 2112g2 [0, -1, 0, -177, 945] [2, 2] 768  
2112.m2 2112g3 [0, -1, 0, -417, -1887] [2] 1536  
2112.m1 2112g4 [0, -1, 0, -2817, 58497] [2] 1536  

Rank

sage: E.rank()
 

The elliptic curves in class 2112g have rank \(0\).

Modular form 2112.2.a.m

sage: E.q_eigenform(10)
 
\( q - q^{3} + 2q^{5} + 4q^{7} + q^{9} + q^{11} - 6q^{13} - 2q^{15} + 6q^{17} + 8q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.