Properties

Label 2112.i
Number of curves 4
Conductor 2112
CM no
Rank 0
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("2112.i1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 2112.i

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
2112.i1 2112e3 [0, -1, 0, -5153, -140127] [2] 2304  
2112.i2 2112e4 [0, -1, 0, -2593, -281951] [2] 4608  
2112.i3 2112e1 [0, -1, 0, -353, 2529] [2] 768 \(\Gamma_0(N)\)-optimal
2112.i4 2112e2 [0, -1, 0, 287, 10081] [2] 1536  

Rank

sage: E.rank()
 

The elliptic curves in class 2112.i have rank \(0\).

Modular form 2112.2.a.i

sage: E.q_eigenform(10)
 
\( q - q^{3} + 2q^{7} + q^{9} + q^{11} + 4q^{13} - 6q^{17} + 4q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.