Properties

Label 2110h
Number of curves 2
Conductor 2110
CM no
Rank 0
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath

sage: E = EllipticCurve("2110.e1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 2110h

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
2110.e1 2110h1 [1, -1, 1, -10422, 412869] [7] 5600 \(\Gamma_0(N)\)-optimal
2110.e2 2110h2 [1, -1, 1, 12678, -29358411] [] 39200  

Rank

sage: E.rank()
 

The elliptic curves in class 2110h have rank \(0\).

Modular form 2110.2.a.e

sage: E.q_eigenform(10)
 
\( q + q^{2} - 3q^{3} + q^{4} + q^{5} - 3q^{6} + q^{7} + q^{8} + 6q^{9} + q^{10} + 5q^{11} - 3q^{12} + q^{14} - 3q^{15} + q^{16} - 3q^{17} + 6q^{18} - q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 7 \\ 7 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.