This is the minimal-conductor curve with torsion $(\Z/2\Z) \times (\Z/8\Z)$.
Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3-1070x+7812\) | (homogenize, simplify) |
\(y^2z+xyz=x^3-1070xz^2+7812z^3\) | (dehomogenize, simplify) |
\(y^2=x^3-1386747x+368636886\) | (homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z \oplus \Z/{8}\Z\)
Torsion generators
\( \left(-36, 18\right) \), \( \left(4, 58\right) \)
Integral points
\( \left(-36, 18\right) \), \( \left(-26, 148\right) \), \( \left(-26, -122\right) \), \( \left(-8, 130\right) \), \( \left(-8, -122\right) \), \( \left(4, 58\right) \), \( \left(4, -62\right) \), \( \left(28, -14\right) \), \( \left(34, 88\right) \), \( \left(34, -122\right) \), \( \left(64, 418\right) \), \( \left(64, -482\right) \), \( \left(244, 3658\right) \), \( \left(244, -3902\right) \)
Invariants
Conductor: | \( 210 \) | = | $2 \cdot 3 \cdot 5 \cdot 7$ | comment: Conductor
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
oscar: conductor(E)
|
Discriminant: | $51438240000 $ | = | $2^{8} \cdot 3^{8} \cdot 5^{4} \cdot 7^{2} $ | comment: Discriminant
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
oscar: discriminant(E)
|
j-invariant: | \( \frac{135487869158881}{51438240000} \) | = | $2^{-8} \cdot 3^{-8} \cdot 5^{-4} \cdot 7^{-2} \cdot 51361^{3}$ | comment: j-invariant
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
oscar: j_invariant(E)
|
Endomorphism ring: | $\Z$ | |||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | sage: E.has_cm()
magma: HasComplexMultiplication(E);
| |
Sato-Tate group: | $\mathrm{SU}(2)$ | |||
Faltings height: | $0.75470864605564508282719006522\dots$ | gp: ellheight(E)
magma: FaltingsHeight(E);
oscar: faltings_height(E)
|
||
Stable Faltings height: | $0.75470864605564508282719006522\dots$ | magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
|
||
$abc$ quality: | $1.0190986885579905\dots$ | |||
Szpiro ratio: | $6.085515026358872\dots$ |
BSD invariants
Analytic rank: | $0$ | sage: E.analytic_rank()
gp: ellanalyticrank(E)
magma: AnalyticRank(E);
|
Regulator: | $1$ | comment: Regulator
sage: E.regulator()
G = E.gen \\ if available
magma: Regulator(E);
|
Real period: | $1.0259330100195332631677131886\dots$ | comment: Real Period
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
|
Tamagawa product: | $ 512 $ = $ 2^{3}\cdot2^{3}\cdot2^{2}\cdot2 $ | comment: Tamagawa numbers
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
|
Torsion order: | $16$ | comment: Torsion order
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
|
Analytic order of Ш: | $1$ ( exact) | comment: Order of Sha
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
|
Special value: | $ L(E,1) $ ≈ $ 2.0518660200390665263354263771 $ | comment: Special L-value
r = E.rank();
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
|
BSD formula
$\displaystyle 2.051866020 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{1 \cdot 1.025933 \cdot 1.000000 \cdot 512}{16^2} \approx 2.051866020$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 256 | comment: Modular degree
sage: E.modular_degree()
gp: ellmoddegree(E)
magma: ModularDegree(E);
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 | comment: Manin constant
magma: ManinConstant(E);
|
Local data
This elliptic curve is semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $v_p(N)$ | $v_p(\Delta)$ | $v_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $8$ | $I_{8}$ | split multiplicative | -1 | 1 | 8 | 8 |
$3$ | $8$ | $I_{8}$ | split multiplicative | -1 | 1 | 8 | 8 |
$5$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 |
$7$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2Cs | 8.96.0.40 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \), index $768$, genus $13$, and generators
$\left(\begin{array}{rr} 15 & 16 \\ 74 & 289 \end{array}\right),\left(\begin{array}{rr} 1121 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1353 & 16 \\ 1076 & 121 \end{array}\right),\left(\begin{array}{rr} 13 & 8 \\ 320 & 617 \end{array}\right),\left(\begin{array}{rr} 241 & 16 \\ 1446 & 97 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 4 & 65 \end{array}\right),\left(\begin{array}{rr} 1665 & 16 \\ 1664 & 17 \end{array}\right)$.
The torsion field $K:=\Q(E[1680])$ is a degree-$1486356480$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1680\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | split multiplicative | $4$ | \( 1 \) |
$3$ | split multiplicative | $4$ | \( 70 = 2 \cdot 5 \cdot 7 \) |
$5$ | split multiplicative | $6$ | \( 42 = 2 \cdot 3 \cdot 7 \) |
$7$ | nonsplit multiplicative | $8$ | \( 30 = 2 \cdot 3 \cdot 5 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 4 and 8.
Its isogeny class 210.e
consists of 8 curves linked by isogenies of
degrees dividing 16.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \oplus \Z/{8}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$4$ | \(\Q(i, \sqrt{7})\) | \(\Z/4\Z \oplus \Z/8\Z\) | not in database |
$4$ | \(\Q(\sqrt{-6}, \sqrt{10})\) | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
$4$ | \(\Q(\sqrt{6}, \sqrt{70})\) | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
$8$ | 8.2.4253299470000.8 | \(\Z/2\Z \oplus \Z/24\Z\) | not in database |
$16$ | deg 16 | \(\Z/8\Z \oplus \Z/8\Z\) | not in database |
$16$ | 16.0.5951500145509072896.2 | \(\Z/4\Z \oplus \Z/16\Z\) | not in database |
$16$ | 16.0.63456228123711897600000000.20 | \(\Z/4\Z \oplus \Z/16\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/32\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/32\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 |
---|---|---|---|---|
Reduction type | split | split | split | nonsplit |
$\lambda$-invariant(s) | 2 | 5 | 1 | 0 |
$\mu$-invariant(s) | 0 | 0 | 0 | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 3$ of good reduction are zero.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.
Additional information
This is the curve of minimal conductor and torsion $(\Z/2\Z) \times (\Z/8\Z)$. Every elliptic curve $E/\Q$ with this torsion group must have conductor divisible by $210 = 2 \cdot 3 \cdot 5 \cdot 7$ (for instance, if $E$ had good reduction at $7$ then the reduction mod $7$ would have at least $16$ points, which exceeds the Weil bound $(\sqrt7+1)^2 < 14$.