Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3-119300x-16229850\) | (homogenize, simplify) |
\(y^2z+xyz=x^3-119300xz^2-16229850z^3\) | (dehomogenize, simplify) |
\(y^2=x^3-154612827x-756756043146\) | (homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Torsion generators
\( \left(\frac{1599}{4}, -\frac{1599}{8}\right) \)
Integral points
None
Invariants
Conductor: | \( 210 \) | = | $2 \cdot 3 \cdot 5 \cdot 7$ | comment: Conductor
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
oscar: conductor(E)
|
Discriminant: | $-4984939585440150 $ | = | $-1 \cdot 2 \cdot 3 \cdot 5^{2} \cdot 7^{16} $ | comment: Discriminant
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
oscar: discriminant(E)
|
j-invariant: | \( -\frac{187778242790732059201}{4984939585440150} \) | = | $-1 \cdot 2^{-1} \cdot 3^{-1} \cdot 5^{-2} \cdot 7^{-16} \cdot 241^{3} \cdot 23761^{3}$ | comment: j-invariant
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
oscar: j_invariant(E)
|
Endomorphism ring: | $\Z$ | |||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | sage: E.has_cm()
magma: HasComplexMultiplication(E);
| |
Sato-Tate group: | $\mathrm{SU}(2)$ | |||
Faltings height: | $1.7944294168955630469530382474\dots$ | gp: ellheight(E)
magma: FaltingsHeight(E);
oscar: faltings_height(E)
|
||
Stable Faltings height: | $1.7944294168955630469530382474\dots$ | magma: StableFaltingsHeight(E);
oscar: stable_faltings_height(E)
|
||
$abc$ quality: | $1.0554678196515268\dots$ | |||
Szpiro ratio: | $8.738676972435714\dots$ |
BSD invariants
Analytic rank: | $0$ | sage: E.analytic_rank()
gp: ellanalyticrank(E)
magma: AnalyticRank(E);
|
Regulator: | $1$ | comment: Regulator
sage: E.regulator()
G = E.gen \\ if available
magma: Regulator(E);
|
Real period: | $0.12824162625244165789596414857\dots$ | comment: Real Period
sage: E.period_lattice().omega()
gp: if(E.disc>0,2,1)*E.omega[1]
magma: (Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
|
Tamagawa product: | $ 4 $ = $ 1\cdot1\cdot2\cdot2 $ | comment: Tamagawa numbers
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
oscar: tamagawa_numbers(E)
|
Torsion order: | $2$ | comment: Torsion order
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
oscar: prod(torsion_structure(E)[1])
|
Analytic order of Ш: | $16$ = $4^2$ ( exact) | comment: Order of Sha
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
|
Special value: | $ L(E,1) $ ≈ $ 2.0518660200390665263354263771 $ | comment: Special L-value
r = E.rank();
gp: [r,L1r] = ellanalyticrank(E); L1r/r!
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
|
BSD formula
$\displaystyle 2.051866020 \approx L(E,1) = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \approx \frac{16 \cdot 0.128242 \cdot 1.000000 \cdot 4}{2^2} \approx 2.051866020$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 2048 | comment: Modular degree
sage: E.modular_degree()
gp: ellmoddegree(E)
magma: ModularDegree(E);
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 | comment: Manin constant
magma: ManinConstant(E);
|
Local data
This elliptic curve is semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $v_p(N)$ | $v_p(\Delta)$ | $v_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
$3$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
$5$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
$7$ | $2$ | $I_{16}$ | nonsplit multiplicative | 1 | 1 | 16 | 16 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 16.96.0.149 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 3360 = 2^{5} \cdot 3 \cdot 5 \cdot 7 \), index $768$, genus $13$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 32 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 32 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 30 & 31 \\ 2089 & 3204 \end{array}\right),\left(\begin{array}{rr} 2116 & 29 \\ 671 & 770 \end{array}\right),\left(\begin{array}{rr} 5 & 28 \\ 68 & 381 \end{array}\right),\left(\begin{array}{rr} 2711 & 26 \\ 2118 & 875 \end{array}\right),\left(\begin{array}{rr} 1471 & 32 \\ 2326 & 513 \end{array}\right),\left(\begin{array}{rr} 3329 & 32 \\ 3328 & 33 \end{array}\right),\left(\begin{array}{rr} 1921 & 32 \\ 496 & 513 \end{array}\right),\left(\begin{array}{rr} 23 & 18 \\ 798 & 1355 \end{array}\right)$.
The torsion field $K:=\Q(E[3360])$ is a degree-$23781703680$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/3360\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | split multiplicative | $4$ | \( 3 \) |
$3$ | split multiplicative | $4$ | \( 70 = 2 \cdot 5 \cdot 7 \) |
$5$ | split multiplicative | $6$ | \( 42 = 2 \cdot 3 \cdot 7 \) |
$7$ | nonsplit multiplicative | $8$ | \( 30 = 2 \cdot 3 \cdot 5 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 4, 8 and 16.
Its isogeny class 210.e
consists of 8 curves linked by isogenies of
degrees dividing 16.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-6}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$2$ | \(\Q(\sqrt{6}) \) | \(\Z/4\Z\) | not in database |
$2$ | \(\Q(\sqrt{-1}) \) | \(\Z/4\Z\) | 2.0.4.1-22050.2-d1 |
$4$ | \(\Q(i, \sqrt{6})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | 4.0.1382400.3 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | 4.2.1382400.2 | \(\Z/8\Z\) | not in database |
$4$ | \(\Q(\zeta_{12})\) | \(\Z/8\Z\) | not in database |
$4$ | \(\Q(\zeta_{8})\) | \(\Z/8\Z\) | not in database |
$8$ | 8.0.7644119040000.32 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.7644119040000.31 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$8$ | \(\Q(\zeta_{24})\) | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$8$ | 8.0.73383542784000000.51 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$8$ | 8.2.73383542784000000.14 | \(\Z/16\Z\) | not in database |
$8$ | 8.0.191102976.3 | \(\Z/16\Z\) | not in database |
$8$ | 8.0.849346560000.6 | \(\Z/16\Z\) | not in database |
$8$ | 8.0.10485760000.3 | \(\Z/16\Z\) | not in database |
$8$ | 8.2.4253299470000.8 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
$16$ | 16.0.9349208943630483456.10 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
$16$ | 16.0.721389578983833600000000.8 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 |
---|---|---|---|---|
Reduction type | split | split | split | nonsplit |
$\lambda$-invariant(s) | 2 | 5 | 1 | 0 |
$\mu$-invariant(s) | 3 | 0 | 0 | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 3$ of good reduction are zero.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.