sage:E = EllipticCurve("a1")
E.isogeny_class()
sage:E.rank()
The elliptic curves in class 20a have
rank 0.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1 |
5 | 1+T |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
3 |
1+2T+3T2 |
1.3.c
|
7 |
1−2T+7T2 |
1.7.ac
|
11 |
1+11T2 |
1.11.a
|
13 |
1−2T+13T2 |
1.13.ac
|
17 |
1+6T+17T2 |
1.17.g
|
19 |
1+4T+19T2 |
1.19.e
|
23 |
1−6T+23T2 |
1.23.ag
|
29 |
1−6T+29T2 |
1.29.ag
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 20a do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the Cremona numbering.
⎝⎜⎜⎛1236216336126321⎠⎟⎟⎞
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.
Elliptic curves in class 20a
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
20.a4 |
20a1 |
[0,1,0,4,4] |
21296/25 |
−6400 |
[6] |
1 |
−0.58338
|
Γ0(N)-optimal |
20.a3 |
20a2 |
[0,1,0,−1,0] |
16384/5 |
80 |
[6] |
2 |
−0.92995
|
|
20.a2 |
20a3 |
[0,1,0,−36,−140] |
−20720464/15625 |
−4000000 |
[2] |
3 |
−0.034070
|
|
20.a1 |
20a4 |
[0,1,0,−41,−116] |
488095744/125 |
2000 |
[2] |
6 |
−0.38064
|
|