Properties

Label 20a
Number of curves 44
Conductor 2020
CM no
Rank 00
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("a1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 20a have rank 00.

L-function data

 
Bad L-factors:
Prime L-Factor
2211
551+T1 + T
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
33 1+2T+3T2 1 + 2 T + 3 T^{2} 1.3.c
77 12T+7T2 1 - 2 T + 7 T^{2} 1.7.ac
1111 1+11T2 1 + 11 T^{2} 1.11.a
1313 12T+13T2 1 - 2 T + 13 T^{2} 1.13.ac
1717 1+6T+17T2 1 + 6 T + 17 T^{2} 1.17.g
1919 1+4T+19T2 1 + 4 T + 19 T^{2} 1.19.e
2323 16T+23T2 1 - 6 T + 23 T^{2} 1.23.ag
2929 16T+29T2 1 - 6 T + 29 T^{2} 1.29.ag
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 20a do not have complex multiplication.

Modular form 20.2.a.a

Copy content sage:E.q_eigenform(10)
 
q2q3q5+2q7+q9+2q13+2q156q174q19+O(q20)q - 2 q^{3} - q^{5} + 2 q^{7} + q^{9} + 2 q^{13} + 2 q^{15} - 6 q^{17} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The i,ji,j entry is the smallest degree of a cyclic isogeny between the ii-th and jj-th curve in the isogeny class, in the Cremona numbering.

(1236216336126321)\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 20a

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
20.a4 20a1 [0,1,0,4,4][0, 1, 0, 4, 4] 21296/2521296/25 6400-6400 [6][6] 11 0.58338-0.58338 Γ0(N)\Gamma_0(N)-optimal
20.a3 20a2 [0,1,0,1,0][0, 1, 0, -1, 0] 16384/516384/5 8080 [6][6] 22 0.92995-0.92995  
20.a2 20a3 [0,1,0,36,140][0, 1, 0, -36, -140] 20720464/15625-20720464/15625 4000000-4000000 [2][2] 33 0.034070-0.034070  
20.a1 20a4 [0,1,0,41,116][0, 1, 0, -41, -116] 488095744/125488095744/125 20002000 [2][2] 66 0.38064-0.38064