Show commands for:
SageMath
sage: E = EllipticCurve("r1")
sage: E.isogeny_class()
Elliptic curves in class 209814.r
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
209814.r1 | 209814cz1 | [1, 1, 0, -31612704, -67885747200] | [2] | 38707200 | \(\Gamma_0(N)\)-optimal |
209814.r2 | 209814cz2 | [1, 1, 0, -9232544, -162110696832] | [2] | 77414400 |
Rank
sage: E.rank()
The elliptic curves in class 209814.r have rank \(0\).
Complex multiplication
The elliptic curves in class 209814.r do not have complex multiplication.Modular form 209814.2.a.r
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.