Properties

Label 2093.c
Number of curves $1$
Conductor $2093$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("c1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 2093.c

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2093.c1 2093a1 \([0, 0, 1, -1531, -32312]\) \(-396870925750272/221358574619\) \(-221358574619\) \([]\) \(7440\) \(0.88026\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 2093.c1 has rank \(0\).

Complex multiplication

The elliptic curves in class 2093.c do not have complex multiplication.

Modular form 2093.2.a.c

sage: E.q_eigenform(10)
 
\(q - 2q^{2} + 3q^{3} + 2q^{4} + 3q^{5} - 6q^{6} - q^{7} + 6q^{9} - 6q^{10} + 3q^{11} + 6q^{12} - q^{13} + 2q^{14} + 9q^{15} - 4q^{16} + 4q^{17} - 12q^{18} + 5q^{19} + O(q^{20})\)  Toggle raw display