Properties

Label 20888.a1
Conductor 20888
Discriminant 4678912
j-invariant \( \frac{60742656}{18277} \)
CM no
Rank 3
Torsion Structure \(\mathrm{Trivial}\)

Related objects

Downloads

Learn more about

Show commands for: Magma / Pari/GP / SageMath

Minimal Weierstrass equation

sage: E = EllipticCurve([0, 0, 0, -52, 100]) # or
 
sage: E = EllipticCurve("20888a1")
 
gp: E = ellinit([0, 0, 0, -52, 100]) \\ or
 
gp: E = ellinit("20888a1")
 
magma: E := EllipticCurve([0, 0, 0, -52, 100]); // or
 
magma: E := EllipticCurve("20888a1");
 

\( y^2 = x^{3} - 52 x + 100 \)

Mordell-Weil group structure

\(\Z^3\)

Infinite order Mordell-Weil generators and heights

sage: E.gens()
 
magma: Generators(E);
 

\(P\) =  \( \left(-7, 11\right) \)\( \left(-6, 14\right) \)\( \left(-2, 14\right) \)
\(\hat{h}(P)\) ≈  2.43169610560968150.54681106036545481.3011274198484994

Integral points

sage: E.integral_points()
 
magma: IntegralPoints(E);
 

\((-8,\pm 2)\), \((-7,\pm 11)\), \((-6,\pm 14)\), \((-2,\pm 14)\), \((0,\pm 10)\), \((1,\pm 7)\), \((2,\pm 2)\), \((6,\pm 2)\), \((8,\pm 14)\), \((9,\pm 19)\), \((14,\pm 46)\), \((16,\pm 58)\), \((22,\pm 98)\), \((34,\pm 194)\), \((50,\pm 350)\), \((57,\pm 427)\), \((78,\pm 686)\), \((96,\pm 938)\), \((146,\pm 1762)\), \((184,\pm 2494)\), \((288,\pm 4886)\), \((638,\pm 16114)\), \((1072,\pm 35098)\), \((1241,\pm 43717)\), \((2674,\pm 138274)\), \((12214,\pm 1349854)\)

Invariants

sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor: \( 20888 \)  =  \(2^{3} \cdot 7 \cdot 373\)
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant: \(4678912 \)  =  \(2^{8} \cdot 7^{2} \cdot 373 \)
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
j-invariant: \( \frac{60742656}{18277} \)  =  \(2^{10} \cdot 3^{3} \cdot 7^{-2} \cdot 13^{3} \cdot 373^{-1}\)
Endomorphism ring: \(\Z\)   (no Complex Multiplication)
Sato-Tate Group: $\mathrm{SU}(2)$

BSD invariants

sage: E.rank()
 
magma: Rank(E);
 
Rank: \(3\)
sage: E.regulator()
 
magma: Regulator(E);
 
Regulator: \(0.273664702073\)
sage: E.period_lattice().omega()
 
gp: E.omega[1]
 
magma: RealPeriod(E);
 
Real period: \(2.26508154971\)
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
Tamagawa product: \( 8 \)  = \( 2^{2}\cdot2\cdot1 \)
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
Torsion order: \(1\)
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 
Analytic order of Ш: \(1\) (rounded)

Modular invariants

Modular form 20888.2.a.a

sage: E.q_eigenform(20)
 
gp: xy = elltaniyama(E);
 
gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)
 
magma: ModularForm(E);
 

\( q - 3q^{3} - 4q^{5} - q^{7} + 6q^{9} - 6q^{11} - 7q^{13} + 12q^{15} - 7q^{17} - 8q^{19} + O(q^{20}) \)

For more coefficients, see the Downloads section to the right.

sage: E.modular_degree()
 
magma: ModularDegree(E);
 
Modular degree: 18176
\( \Gamma_0(N) \)-optimal: yes
Manin constant: 1

Special L-value

sage: r = E.rank();
 
sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: ar = ellanalyticrank(E);
 
gp: ar[2]/factorial(ar[1])
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 

\( L^{(3)}(E,1)/3! \) ≈ \( 4.95898293976 \)

Local data

This elliptic curve is not semistable.

sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
prime Tamagawa number Kodaira symbol Reduction type Root number ord(\(N\)) ord(\(\Delta\)) ord\((j)_{-}\)
\(2\) \(4\) \( I_1^{*} \) Additive 1 3 8 0
\(7\) \(2\) \( I_{2} \) Non-split multiplicative 1 1 2 2
\(373\) \(1\) \( I_{1} \) Non-split multiplicative 1 1 1 1

Galois representations

The 2-adic representation attached to this elliptic curve is surjective.

sage: rho = E.galois_representation();
 
sage: [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

The mod \( p \) Galois representation has maximal image \(\GL(2,\F_p)\) for all primes \( p \) .

$p$-adic data

$p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]
 

Note: \(p\)-adic regulator data only exists for primes \(p\ge5\) of good ordinary reduction.

Iwasawa invariants

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 373
Reduction type add ss ordinary nonsplit ordinary ordinary ordinary ordinary ordinary ordinary ordinary ordinary ordinary ss ordinary nonsplit
$\lambda$-invariant(s) - 5,3 3 3 3 5 3 3 3 3 3 3 3 3,3 5 3
$\mu$-invariant(s) - 0,0 0 0 0 0 0 0 0 0 0 0 0 0,0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

Isogenies

This curve has no rational isogenies. Its isogeny class 20888.a consists of this curve only.

Growth of torsion in number fields

The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base-change curve
3 3.3.1492.1 \(\Z/2\Z\) Not in database
6 6.6.830321872.1 \(\Z/2\Z \times \Z/2\Z\) Not in database

We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.