Learn more

Refine search


Results (1-50 of 182 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
20800.a1 20800.a \( 2^{6} \cdot 5^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $7.165071991$ $[0, 0, 0, -340300, -83834000]$ \(y^2=x^3-340300x-83834000\) 7.24.0.a.2, 104.2.0.?, 280.48.0.?, 728.48.2.?, 1820.48.0.?, $\ldots$ $[(9214/3, 683488/3)]$
20800.a2 20800.a \( 2^{6} \cdot 5^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $1.023581713$ $[0, 0, 0, -4300, 166000]$ \(y^2=x^3-4300x+166000\) 7.24.0.a.1, 104.2.0.?, 280.48.0.?, 728.48.2.?, 1820.48.0.?, $\ldots$ $[(46, 256)]$
20800.b1 20800.b \( 2^{6} \cdot 5^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $0.939670140$ $[0, 0, 0, -1420, -20720]$ \(y^2=x^3-1420x-20720\) 8.2.0.a.1 $[(66, 416)]$
20800.c1 20800.c \( 2^{6} \cdot 5^{2} \cdot 13 \) $2$ $\mathsf{trivial}$ $0.322791059$ $[0, 0, 0, -35500, 2590000]$ \(y^2=x^3-35500x+2590000\) 8.2.0.a.1 $[(150, 800), (86, 416)]$
20800.d1 20800.d \( 2^{6} \cdot 5^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -400, -2720]$ \(y^2=x^3-400x-2720\) 26.2.0.a.1 $[ ]$
20800.e1 20800.e \( 2^{6} \cdot 5^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $2.605483242$ $[0, 0, 0, -250, -1250]$ \(y^2=x^3-250x-1250\) 26.2.0.a.1 $[(-11, 13)]$
20800.f1 20800.f \( 2^{6} \cdot 5^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $0.943657708$ $[0, 0, 0, -10, 10]$ \(y^2=x^3-10x+10\) 26.2.0.a.1 $[(1, 1)]$
20800.g1 20800.g \( 2^{6} \cdot 5^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $0.569676945$ $[0, 0, 0, -10000, 340000]$ \(y^2=x^3-10000x+340000\) 26.2.0.a.1 $[(25, 325)]$
20800.h1 20800.h \( 2^{6} \cdot 5^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $0.503498184$ $[0, 1, 0, -18128833, 29703974463]$ \(y^2=x^3+x^2-18128833x+29703974463\) 3.4.0.a.1, 24.8.0-3.a.1.3, 52.2.0.a.1, 156.8.0.?, 312.16.0.? $[(2383, 6400)]$
20800.h2 20800.h \( 2^{6} \cdot 5^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $1.510494552$ $[0, 1, 0, -208833, 46374463]$ \(y^2=x^3+x^2-208833x+46374463\) 3.4.0.a.1, 24.8.0-3.a.1.4, 52.2.0.a.1, 156.8.0.?, 312.16.0.? $[(719, 16384)]$
20800.i1 20800.i \( 2^{6} \cdot 5^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, -725153, -237921857]$ \(y^2=x^3+x^2-725153x-237921857\) 3.4.0.a.1, 52.2.0.a.1, 120.8.0.?, 156.8.0.?, 1560.16.0.? $[ ]$
20800.i2 20800.i \( 2^{6} \cdot 5^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, -8353, -374337]$ \(y^2=x^3+x^2-8353x-374337\) 3.4.0.a.1, 52.2.0.a.1, 120.8.0.?, 156.8.0.?, 1560.16.0.? $[ ]$
20800.j1 20800.j \( 2^{6} \cdot 5^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -1345633, 600280863]$ \(y^2=x^3+x^2-1345633x+600280863\) 2.3.0.a.1, 4.6.0.b.1, 40.12.0-4.b.1.3, 104.12.0.?, 130.6.0.?, $\ldots$ $[ ]$
20800.j2 20800.j \( 2^{6} \cdot 5^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -1217633, 719192863]$ \(y^2=x^3+x^2-1217633x+719192863\) 2.3.0.a.1, 4.6.0.a.1, 20.12.0-4.a.1.1, 52.12.0-4.a.1.2, 260.24.0.?, $\ldots$ $[ ]$
20800.k1 20800.k \( 2^{6} \cdot 5^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, 27167, -4353537]$ \(y^2=x^3+x^2+27167x-4353537\) 52.2.0.a.1 $[ ]$
20800.l1 20800.l \( 2^{6} \cdot 5^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $0.216466299$ $[0, 1, 0, 1087, 35263]$ \(y^2=x^3+x^2+1087x+35263\) 52.2.0.a.1 $[(7, 208)]$
20800.m1 20800.m \( 2^{6} \cdot 5^{2} \cdot 13 \) $2$ $\Z/2\Z$ $1.225117818$ $[0, 1, 0, -73, 183]$ \(y^2=x^3+x^2-73x+183\) 2.3.0.a.1, 40.6.0.d.1, 104.6.0.?, 130.6.0.?, 520.12.0.? $[(7, 8), (13, 40)]$
20800.m2 20800.m \( 2^{6} \cdot 5^{2} \cdot 13 \) $2$ $\Z/2\Z$ $1.225117818$ $[0, 1, 0, 127, 1183]$ \(y^2=x^3+x^2+127x+1183\) 2.3.0.a.1, 40.6.0.a.1, 104.6.0.?, 260.6.0.?, 520.12.0.? $[(3, 40), (9, 56)]$
20800.n1 20800.n \( 2^{6} \cdot 5^{2} \cdot 13 \) $1$ $\Z/2\Z$ $2.443316959$ $[0, 1, 0, -1833, -26537]$ \(y^2=x^3+x^2-1833x-26537\) 2.3.0.a.1, 40.6.0.d.1, 104.6.0.?, 130.6.0.?, 520.12.0.? $[(-21, 56)]$
20800.n2 20800.n \( 2^{6} \cdot 5^{2} \cdot 13 \) $1$ $\Z/2\Z$ $4.886633918$ $[0, 1, 0, 3167, -141537]$ \(y^2=x^3+x^2+3167x-141537\) 2.3.0.a.1, 40.6.0.a.1, 104.6.0.?, 260.6.0.?, 520.12.0.? $[(229, 3556)]$
20800.o1 20800.o \( 2^{6} \cdot 5^{2} \cdot 13 \) $1$ $\Z/2\Z$ $0.717876275$ $[0, 1, 0, -2033, 34063]$ \(y^2=x^3+x^2-2033x+34063\) 2.3.0.a.1, 4.6.0.b.1, 40.12.0-4.b.1.2, 104.12.0.?, 130.6.0.?, $\ldots$ $[(13, 100)]$
20800.o2 20800.o \( 2^{6} \cdot 5^{2} \cdot 13 \) $1$ $\Z/2\Z$ $1.435752550$ $[0, 1, 0, -33, 100063]$ \(y^2=x^3+x^2-33x+100063\) 2.3.0.a.1, 4.6.0.a.1, 40.12.0-4.a.1.1, 104.12.0.?, 260.12.0.?, $\ldots$ $[(18, 325)]$
20800.p1 20800.p \( 2^{6} \cdot 5^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, -40833, 3210463]$ \(y^2=x^3+x^2-40833x+3210463\) 3.4.0.a.1, 52.2.0.a.1, 120.8.0.?, 156.8.0.?, 1560.16.0.? $[ ]$
20800.p2 20800.p \( 2^{6} \cdot 5^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, 159167, 15410463]$ \(y^2=x^3+x^2+159167x+15410463\) 3.4.0.a.1, 52.2.0.a.1, 120.8.0.?, 156.8.0.?, 1560.16.0.? $[ ]$
20800.q1 20800.q \( 2^{6} \cdot 5^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $2.534975298$ $[0, 1, 0, -1633, -26337]$ \(y^2=x^3+x^2-1633x-26337\) 3.4.0.a.1, 24.8.0-3.a.1.4, 52.2.0.a.1, 156.8.0.?, 312.16.0.? $[(119, 1216)]$
20800.q2 20800.q \( 2^{6} \cdot 5^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $0.844991766$ $[0, 1, 0, 6367, -120737]$ \(y^2=x^3+x^2+6367x-120737\) 3.4.0.a.1, 24.8.0-3.a.1.3, 52.2.0.a.1, 156.8.0.?, 312.16.0.? $[(103, 1280)]$
20800.r1 20800.r \( 2^{6} \cdot 5^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -28133, -1825637]$ \(y^2=x^3+x^2-28133x-1825637\) 2.3.0.a.1, 4.6.0.b.1, 8.12.0-4.b.1.1, 10.6.0.a.1, 20.12.0.e.1, $\ldots$ $[ ]$
20800.r2 20800.r \( 2^{6} \cdot 5^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -27633, -1893137]$ \(y^2=x^3+x^2-27633x-1893137\) 2.3.0.a.1, 4.12.0-4.a.1.2, 20.24.0-20.d.1.2, 520.48.0.? $[ ]$
20800.s1 20800.s \( 2^{6} \cdot 5^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, -833, -29537]$ \(y^2=x^3+x^2-833x-29537\) 52.2.0.a.1 $[ ]$
20800.t1 20800.t \( 2^{6} \cdot 5^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $0.557654832$ $[0, 1, 0, -33, 223]$ \(y^2=x^3+x^2-33x+223\) 52.2.0.a.1 $[(-1, 16)]$
20800.u1 20800.u \( 2^{6} \cdot 5^{2} \cdot 13 \) $1$ $\Z/2\Z$ $2.337458199$ $[0, 1, 0, -1633, 4863]$ \(y^2=x^3+x^2-1633x+4863\) 2.3.0.a.1, 4.6.0.b.1, 40.12.0-4.b.1.3, 104.12.0.?, 130.6.0.?, $\ldots$ $[(67, 448)]$
20800.u2 20800.u \( 2^{6} \cdot 5^{2} \cdot 13 \) $1$ $\Z/2\Z$ $1.168729099$ $[0, 1, 0, 6367, 44863]$ \(y^2=x^3+x^2+6367x+44863\) 2.3.0.a.1, 4.6.0.a.1, 20.12.0-4.a.1.1, 52.12.0-4.a.1.2, 260.24.0.?, $\ldots$ $[(19, 416)]$
20800.v1 20800.v \( 2^{6} \cdot 5^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -8633, 305863]$ \(y^2=x^3+x^2-8633x+305863\) 2.3.0.a.1, 4.6.0.b.1, 40.12.0-4.b.1.3, 104.12.0.?, 130.6.0.?, $\ldots$ $[ ]$
20800.v2 20800.v \( 2^{6} \cdot 5^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -508, 5238]$ \(y^2=x^3+x^2-508x+5238\) 2.3.0.a.1, 4.6.0.a.1, 20.12.0-4.a.1.1, 52.12.0-4.a.1.2, 260.24.0.?, $\ldots$ $[ ]$
20800.w1 20800.w \( 2^{6} \cdot 5^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -332033, -70795937]$ \(y^2=x^3+x^2-332033x-70795937\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.b.1, 6.12.0.a.1, 12.24.0.f.1, $\ldots$ $[ ]$
20800.w2 20800.w \( 2^{6} \cdot 5^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -52033, 4524063]$ \(y^2=x^3+x^2-52033x+4524063\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.b.1, 6.12.0.a.1, 12.24.0.f.1, $\ldots$ $[ ]$
20800.w3 20800.w \( 2^{6} \cdot 5^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -20033, 10060063]$ \(y^2=x^3+x^2-20033x+10060063\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.a.1, 6.12.0.a.1, 12.48.0.b.1, $\ldots$ $[ ]$
20800.w4 20800.w \( 2^{6} \cdot 5^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, 179967, -268939937]$ \(y^2=x^3+x^2+179967x-268939937\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.a.1, 6.12.0.a.1, 12.48.0.b.2, $\ldots$ $[ ]$
20800.x1 20800.x \( 2^{6} \cdot 5^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $0.298567990$ $[0, -1, 0, -213, 1267]$ \(y^2=x^3-x^2-213x+1267\) 3.4.0.a.1, 26.2.0.a.1, 78.8.0.?, 120.8.0.?, 1560.16.0.? $[(6, 13)]$
20800.x2 20800.x \( 2^{6} \cdot 5^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $0.895703971$ $[0, -1, 0, -13, -13]$ \(y^2=x^3-x^2-13x-13\) 3.4.0.a.1, 26.2.0.a.1, 78.8.0.?, 120.8.0.?, 1560.16.0.? $[(-2, 1)]$
20800.y1 20800.y \( 2^{6} \cdot 5^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -5333, -147713]$ \(y^2=x^3-x^2-5333x-147713\) 3.4.0.a.1, 24.8.0-3.a.1.1, 26.2.0.a.1, 78.8.0.?, 312.16.0.? $[ ]$
20800.y2 20800.y \( 2^{6} \cdot 5^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -333, 2287]$ \(y^2=x^3-x^2-333x+2287\) 3.4.0.a.1, 24.8.0-3.a.1.2, 26.2.0.a.1, 78.8.0.?, 312.16.0.? $[ ]$
20800.z1 20800.z \( 2^{6} \cdot 5^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $14.84641974$ $[0, -1, 0, -244583, -45490463]$ \(y^2=x^3-x^2-244583x-45490463\) 26.2.0.a.1 $[(-3585168/107, 664934507/107)]$
20800.ba1 20800.ba \( 2^{6} \cdot 5^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -1333, 13037]$ \(y^2=x^3-x^2-1333x+13037\) 26.2.0.a.1 $[ ]$
20800.bb1 20800.bb \( 2^{6} \cdot 5^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $1.953049446$ $[0, -1, 0, -53, -83]$ \(y^2=x^3-x^2-53x-83\) 26.2.0.a.1 $[(-4, 7)]$
20800.bc1 20800.bc \( 2^{6} \cdot 5^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $0.215687871$ $[0, -1, 0, -9783, 367837]$ \(y^2=x^3-x^2-9783x+367837\) 26.2.0.a.1 $[(-68, 845)]$
20800.bd1 20800.bd \( 2^{6} \cdot 5^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $2.010370350$ $[0, -1, 0, -735233, 242898337]$ \(y^2=x^3-x^2-735233x+242898337\) 3.4.0.a.1, 9.12.0.a.1, 104.2.0.?, 117.36.0.?, 120.8.0.?, $\ldots$ $[(341, 5632)]$
20800.bd2 20800.bd \( 2^{6} \cdot 5^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $0.670123450$ $[0, -1, 0, -7233, 474337]$ \(y^2=x^3-x^2-7233x+474337\) 3.12.0.a.1, 104.2.0.?, 117.36.0.?, 120.24.0.?, 312.24.1.?, $\ldots$ $[(-59, 832)]$
20800.bd3 20800.bd \( 2^{6} \cdot 5^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $2.010370350$ $[0, -1, 0, 767, -13663]$ \(y^2=x^3-x^2+767x-13663\) 3.4.0.a.1, 9.12.0.a.1, 104.2.0.?, 117.36.0.?, 120.8.0.?, $\ldots$ $[(53, 416)]$
20800.be1 20800.be \( 2^{6} \cdot 5^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $2.504199950$ $[0, -1, 0, -133, -163]$ \(y^2=x^3-x^2-133x-163\) 26.2.0.a.1 $[(-4, 17)]$
Next   displayed columns for results