Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
20800.a1 |
20800r2 |
20800.a |
20800r |
$2$ |
$7$ |
\( 2^{6} \cdot 5^{2} \cdot 13 \) |
\( - 2^{19} \cdot 5^{6} \cdot 13^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$3640$ |
$96$ |
$2$ |
$7.165071991$ |
$1$ |
|
$0$ |
$376320$ |
$2.134235$ |
$-1064019559329/125497034$ |
$1.06269$ |
$5.03000$ |
$[0, 0, 0, -340300, -83834000]$ |
\(y^2=x^3-340300x-83834000\) |
7.24.0.a.2, 104.2.0.?, 280.48.0.?, 728.48.2.?, 1820.48.0.?, $\ldots$ |
$[(9214/3, 683488/3)]$ |
20800.a2 |
20800r1 |
20800.a |
20800r |
$2$ |
$7$ |
\( 2^{6} \cdot 5^{2} \cdot 13 \) |
\( - 2^{25} \cdot 5^{6} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.1 |
7B.6.1 |
$3640$ |
$96$ |
$2$ |
$1.023581713$ |
$1$ |
|
$4$ |
$53760$ |
$1.161280$ |
$-2146689/1664$ |
$0.96784$ |
$3.77791$ |
$[0, 0, 0, -4300, 166000]$ |
\(y^2=x^3-4300x+166000\) |
7.24.0.a.1, 104.2.0.?, 280.48.0.?, 728.48.2.?, 1820.48.0.?, $\ldots$ |
$[(46, 256)]$ |
20800.b1 |
20800dj1 |
20800.b |
20800dj |
$1$ |
$1$ |
\( 2^{6} \cdot 5^{2} \cdot 13 \) |
\( - 2^{19} \cdot 5^{2} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$0.939670140$ |
$1$ |
|
$6$ |
$23040$ |
$0.626646$ |
$-48317985/338$ |
$0.91282$ |
$3.35933$ |
$[0, 0, 0, -1420, -20720]$ |
\(y^2=x^3-1420x-20720\) |
8.2.0.a.1 |
$[(66, 416)]$ |
20800.c1 |
20800br1 |
20800.c |
20800br |
$1$ |
$1$ |
\( 2^{6} \cdot 5^{2} \cdot 13 \) |
\( - 2^{19} \cdot 5^{8} \cdot 13^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$0.322791059$ |
$1$ |
|
$20$ |
$115200$ |
$1.431364$ |
$-48317985/338$ |
$0.91282$ |
$4.33056$ |
$[0, 0, 0, -35500, 2590000]$ |
\(y^2=x^3-35500x+2590000\) |
8.2.0.a.1 |
$[(150, 800), (86, 416)]$ |
20800.d1 |
20800ct1 |
20800.d |
20800ct |
$1$ |
$1$ |
\( 2^{6} \cdot 5^{2} \cdot 13 \) |
\( 2^{14} \cdot 5^{2} \cdot 13^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$26$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$13824$ |
$0.447237$ |
$17280000/2197$ |
$1.04671$ |
$2.97585$ |
$[0, 0, 0, -400, -2720]$ |
\(y^2=x^3-400x-2720\) |
26.2.0.a.1 |
$[ ]$ |
20800.e1 |
20800ce1 |
20800.e |
20800ce |
$1$ |
$1$ |
\( 2^{6} \cdot 5^{2} \cdot 13 \) |
\( 2^{6} \cdot 5^{8} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$26$ |
$2$ |
$0$ |
$2.605483242$ |
$1$ |
|
$2$ |
$9600$ |
$0.351098$ |
$69120/13$ |
$0.61830$ |
$2.83404$ |
$[0, 0, 0, -250, -1250]$ |
\(y^2=x^3-250x-1250\) |
26.2.0.a.1 |
$[(-11, 13)]$ |
20800.f1 |
20800s1 |
20800.f |
20800s |
$1$ |
$1$ |
\( 2^{6} \cdot 5^{2} \cdot 13 \) |
\( 2^{6} \cdot 5^{2} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$26$ |
$2$ |
$0$ |
$0.943657708$ |
$1$ |
|
$2$ |
$1920$ |
$-0.453621$ |
$69120/13$ |
$0.61830$ |
$1.86281$ |
$[0, 0, 0, -10, 10]$ |
\(y^2=x^3-10x+10\) |
26.2.0.a.1 |
$[(1, 1)]$ |
20800.g1 |
20800cd1 |
20800.g |
20800cd |
$1$ |
$1$ |
\( 2^{6} \cdot 5^{2} \cdot 13 \) |
\( 2^{14} \cdot 5^{8} \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$26$ |
$2$ |
$0$ |
$0.569676945$ |
$1$ |
|
$4$ |
$69120$ |
$1.251957$ |
$17280000/2197$ |
$1.04671$ |
$3.94708$ |
$[0, 0, 0, -10000, 340000]$ |
\(y^2=x^3-10000x+340000\) |
26.2.0.a.1 |
$[(25, 325)]$ |
20800.h1 |
20800dv2 |
20800.h |
20800dv |
$2$ |
$3$ |
\( 2^{6} \cdot 5^{2} \cdot 13 \) |
\( - 2^{24} \cdot 5^{8} \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$312$ |
$16$ |
$0$ |
$0.503498184$ |
$1$ |
|
$4$ |
$1036800$ |
$2.626823$ |
$-6434774386429585/140608$ |
$1.01781$ |
$6.21085$ |
$[0, 1, 0, -18128833, 29703974463]$ |
\(y^2=x^3+x^2-18128833x+29703974463\) |
3.4.0.a.1, 24.8.0-3.a.1.3, 52.2.0.a.1, 156.8.0.?, 312.16.0.? |
$[(2383, 6400)]$ |
20800.h2 |
20800dv1 |
20800.h |
20800dv |
$2$ |
$3$ |
\( 2^{6} \cdot 5^{2} \cdot 13 \) |
\( - 2^{36} \cdot 5^{8} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$312$ |
$16$ |
$0$ |
$1.510494552$ |
$1$ |
|
$4$ |
$345600$ |
$2.077518$ |
$-9836106385/3407872$ |
$0.94524$ |
$4.91120$ |
$[0, 1, 0, -208833, 46374463]$ |
\(y^2=x^3+x^2-208833x+46374463\) |
3.4.0.a.1, 24.8.0-3.a.1.4, 52.2.0.a.1, 156.8.0.?, 312.16.0.? |
$[(719, 16384)]$ |
20800.i1 |
20800bf2 |
20800.i |
20800bf |
$2$ |
$3$ |
\( 2^{6} \cdot 5^{2} \cdot 13 \) |
\( - 2^{24} \cdot 5^{2} \cdot 13^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1560$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$207360$ |
$1.822105$ |
$-6434774386429585/140608$ |
$1.01781$ |
$5.23962$ |
$[0, 1, 0, -725153, -237921857]$ |
\(y^2=x^3+x^2-725153x-237921857\) |
3.4.0.a.1, 52.2.0.a.1, 120.8.0.?, 156.8.0.?, 1560.16.0.? |
$[ ]$ |
20800.i2 |
20800bf1 |
20800.i |
20800bf |
$2$ |
$3$ |
\( 2^{6} \cdot 5^{2} \cdot 13 \) |
\( - 2^{36} \cdot 5^{2} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1560$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$69120$ |
$1.272800$ |
$-9836106385/3407872$ |
$0.94524$ |
$3.93998$ |
$[0, 1, 0, -8353, -374337]$ |
\(y^2=x^3+x^2-8353x-374337\) |
3.4.0.a.1, 52.2.0.a.1, 120.8.0.?, 156.8.0.?, 1560.16.0.? |
$[ ]$ |
20800.j1 |
20800cr1 |
20800.j |
20800cr |
$2$ |
$2$ |
\( 2^{6} \cdot 5^{2} \cdot 13 \) |
\( 2^{26} \cdot 5^{11} \cdot 13 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.3 |
2B |
$520$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$368640$ |
$2.201389$ |
$65787589563409/10400000$ |
$0.97958$ |
$5.42616$ |
$[0, 1, 0, -1345633, 600280863]$ |
\(y^2=x^3+x^2-1345633x+600280863\) |
2.3.0.a.1, 4.6.0.b.1, 40.12.0-4.b.1.3, 104.12.0.?, 130.6.0.?, $\ldots$ |
$[ ]$ |
20800.j2 |
20800cr2 |
20800.j |
20800cr |
$2$ |
$2$ |
\( 2^{6} \cdot 5^{2} \cdot 13 \) |
\( - 2^{22} \cdot 5^{16} \cdot 13^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.5 |
2B |
$520$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$737280$ |
$2.547966$ |
$-48743122863889/26406250000$ |
$0.98824$ |
$5.46245$ |
$[0, 1, 0, -1217633, 719192863]$ |
\(y^2=x^3+x^2-1217633x+719192863\) |
2.3.0.a.1, 4.6.0.a.1, 20.12.0-4.a.1.1, 52.12.0-4.a.1.2, 260.24.0.?, $\ldots$ |
$[ ]$ |
20800.k1 |
20800bq1 |
20800.k |
20800bq |
$1$ |
$1$ |
\( 2^{6} \cdot 5^{2} \cdot 13 \) |
\( - 2^{16} \cdot 5^{8} \cdot 13^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$52$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$115200$ |
$1.748425$ |
$86614940/371293$ |
$0.92460$ |
$4.43544$ |
$[0, 1, 0, 27167, -4353537]$ |
\(y^2=x^3+x^2+27167x-4353537\) |
52.2.0.a.1 |
$[ ]$ |
20800.l1 |
20800di1 |
20800.l |
20800di |
$1$ |
$1$ |
\( 2^{6} \cdot 5^{2} \cdot 13 \) |
\( - 2^{16} \cdot 5^{2} \cdot 13^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$52$ |
$2$ |
$0$ |
$0.216466299$ |
$1$ |
|
$6$ |
$23040$ |
$0.943706$ |
$86614940/371293$ |
$0.92460$ |
$3.46421$ |
$[0, 1, 0, 1087, 35263]$ |
\(y^2=x^3+x^2+1087x+35263\) |
52.2.0.a.1 |
$[(7, 208)]$ |
20800.m1 |
20800bo1 |
20800.m |
20800bo |
$2$ |
$2$ |
\( 2^{6} \cdot 5^{2} \cdot 13 \) |
\( 2^{12} \cdot 5^{3} \cdot 13 \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$520$ |
$12$ |
$0$ |
$1.225117818$ |
$1$ |
|
$17$ |
$3584$ |
$0.032998$ |
$85184/13$ |
$0.69774$ |
$2.46398$ |
$[0, 1, 0, -73, 183]$ |
\(y^2=x^3+x^2-73x+183\) |
2.3.0.a.1, 40.6.0.d.1, 104.6.0.?, 130.6.0.?, 520.12.0.? |
$[(7, 8), (13, 40)]$ |
20800.m2 |
20800bo2 |
20800.m |
20800bo |
$2$ |
$2$ |
\( 2^{6} \cdot 5^{2} \cdot 13 \) |
\( - 2^{15} \cdot 5^{3} \cdot 13^{2} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$520$ |
$12$ |
$0$ |
$1.225117818$ |
$1$ |
|
$19$ |
$7168$ |
$0.379571$ |
$54872/169$ |
$0.79258$ |
$2.77611$ |
$[0, 1, 0, 127, 1183]$ |
\(y^2=x^3+x^2+127x+1183\) |
2.3.0.a.1, 40.6.0.a.1, 104.6.0.?, 260.6.0.?, 520.12.0.? |
$[(3, 40), (9, 56)]$ |
20800.n1 |
20800cb1 |
20800.n |
20800cb |
$2$ |
$2$ |
\( 2^{6} \cdot 5^{2} \cdot 13 \) |
\( 2^{12} \cdot 5^{9} \cdot 13 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$520$ |
$12$ |
$0$ |
$2.443316959$ |
$1$ |
|
$5$ |
$17920$ |
$0.837717$ |
$85184/13$ |
$0.69774$ |
$3.43521$ |
$[0, 1, 0, -1833, -26537]$ |
\(y^2=x^3+x^2-1833x-26537\) |
2.3.0.a.1, 40.6.0.d.1, 104.6.0.?, 130.6.0.?, 520.12.0.? |
$[(-21, 56)]$ |
20800.n2 |
20800cb2 |
20800.n |
20800cb |
$2$ |
$2$ |
\( 2^{6} \cdot 5^{2} \cdot 13 \) |
\( - 2^{15} \cdot 5^{9} \cdot 13^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$520$ |
$12$ |
$0$ |
$4.886633918$ |
$1$ |
|
$3$ |
$35840$ |
$1.184290$ |
$54872/169$ |
$0.79258$ |
$3.74733$ |
$[0, 1, 0, 3167, -141537]$ |
\(y^2=x^3+x^2+3167x-141537\) |
2.3.0.a.1, 40.6.0.a.1, 104.6.0.?, 260.6.0.?, 520.12.0.? |
$[(229, 3556)]$ |
20800.o1 |
20800dg1 |
20800.o |
20800dg |
$2$ |
$2$ |
\( 2^{6} \cdot 5^{2} \cdot 13 \) |
\( 2^{14} \cdot 5^{7} \cdot 13 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.3 |
2B |
$520$ |
$48$ |
$0$ |
$0.717876275$ |
$1$ |
|
$7$ |
$12288$ |
$0.756957$ |
$3631696/65$ |
$0.75998$ |
$3.46645$ |
$[0, 1, 0, -2033, 34063]$ |
\(y^2=x^3+x^2-2033x+34063\) |
2.3.0.a.1, 4.6.0.b.1, 40.12.0-4.b.1.2, 104.12.0.?, 130.6.0.?, $\ldots$ |
$[(13, 100)]$ |
20800.o2 |
20800dg2 |
20800.o |
20800dg |
$2$ |
$2$ |
\( 2^{6} \cdot 5^{2} \cdot 13 \) |
\( - 2^{16} \cdot 5^{8} \cdot 13^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.5 |
2B |
$520$ |
$48$ |
$0$ |
$1.435752550$ |
$1$ |
|
$5$ |
$24576$ |
$1.103531$ |
$-4/4225$ |
$1.09431$ |
$3.67611$ |
$[0, 1, 0, -33, 100063]$ |
\(y^2=x^3+x^2-33x+100063\) |
2.3.0.a.1, 4.6.0.a.1, 40.12.0-4.a.1.1, 104.12.0.?, 260.12.0.?, $\ldots$ |
$[(18, 325)]$ |
20800.p1 |
20800bd1 |
20800.p |
20800bd |
$2$ |
$3$ |
\( 2^{6} \cdot 5^{2} \cdot 13 \) |
\( - 2^{20} \cdot 5^{10} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1560$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$69120$ |
$1.507277$ |
$-2941225/52$ |
$0.97074$ |
$4.37461$ |
$[0, 1, 0, -40833, 3210463]$ |
\(y^2=x^3+x^2-40833x+3210463\) |
3.4.0.a.1, 52.2.0.a.1, 120.8.0.?, 156.8.0.?, 1560.16.0.? |
$[ ]$ |
20800.p2 |
20800bd2 |
20800.p |
20800bd |
$2$ |
$3$ |
\( 2^{6} \cdot 5^{2} \cdot 13 \) |
\( - 2^{24} \cdot 5^{10} \cdot 13^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1560$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$207360$ |
$2.056583$ |
$174196775/140608$ |
$0.95390$ |
$4.78207$ |
$[0, 1, 0, 159167, 15410463]$ |
\(y^2=x^3+x^2+159167x+15410463\) |
3.4.0.a.1, 52.2.0.a.1, 120.8.0.?, 156.8.0.?, 1560.16.0.? |
$[ ]$ |
20800.q1 |
20800du1 |
20800.q |
20800du |
$2$ |
$3$ |
\( 2^{6} \cdot 5^{2} \cdot 13 \) |
\( - 2^{20} \cdot 5^{4} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$312$ |
$16$ |
$0$ |
$2.534975298$ |
$1$ |
|
$2$ |
$13824$ |
$0.702558$ |
$-2941225/52$ |
$0.97074$ |
$3.40338$ |
$[0, 1, 0, -1633, -26337]$ |
\(y^2=x^3+x^2-1633x-26337\) |
3.4.0.a.1, 24.8.0-3.a.1.4, 52.2.0.a.1, 156.8.0.?, 312.16.0.? |
$[(119, 1216)]$ |
20800.q2 |
20800du2 |
20800.q |
20800du |
$2$ |
$3$ |
\( 2^{6} \cdot 5^{2} \cdot 13 \) |
\( - 2^{24} \cdot 5^{4} \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$312$ |
$16$ |
$0$ |
$0.844991766$ |
$1$ |
|
$4$ |
$41472$ |
$1.251863$ |
$174196775/140608$ |
$0.95390$ |
$3.81084$ |
$[0, 1, 0, 6367, -120737]$ |
\(y^2=x^3+x^2+6367x-120737\) |
3.4.0.a.1, 24.8.0-3.a.1.3, 52.2.0.a.1, 156.8.0.?, 312.16.0.? |
$[(103, 1280)]$ |
20800.r1 |
20800cp1 |
20800.r |
20800cp |
$2$ |
$2$ |
\( 2^{6} \cdot 5^{2} \cdot 13 \) |
\( 2^{10} \cdot 5^{7} \cdot 13^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.23 |
2B |
$520$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$36864$ |
$1.137285$ |
$153910165504/845$ |
$0.97660$ |
$4.25917$ |
$[0, 1, 0, -28133, -1825637]$ |
\(y^2=x^3+x^2-28133x-1825637\) |
2.3.0.a.1, 4.6.0.b.1, 8.12.0-4.b.1.1, 10.6.0.a.1, 20.12.0.e.1, $\ldots$ |
$[ ]$ |
20800.r2 |
20800cp2 |
20800.r |
20800cp |
$2$ |
$2$ |
\( 2^{6} \cdot 5^{2} \cdot 13 \) |
\( - 2^{14} \cdot 5^{8} \cdot 13^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.6 |
2B |
$520$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$73728$ |
$1.483860$ |
$-9115564624/714025$ |
$0.88863$ |
$4.26653$ |
$[0, 1, 0, -27633, -1893137]$ |
\(y^2=x^3+x^2-27633x-1893137\) |
2.3.0.a.1, 4.12.0-4.a.1.2, 20.24.0-20.d.1.2, 520.48.0.? |
$[ ]$ |
20800.s1 |
20800bp1 |
20800.s |
20800bp |
$1$ |
$1$ |
\( 2^{6} \cdot 5^{2} \cdot 13 \) |
\( - 2^{16} \cdot 5^{8} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$52$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$23040$ |
$0.895149$ |
$-2500/13$ |
$0.84551$ |
$3.42875$ |
$[0, 1, 0, -833, -29537]$ |
\(y^2=x^3+x^2-833x-29537\) |
52.2.0.a.1 |
$[ ]$ |
20800.t1 |
20800dh1 |
20800.t |
20800dh |
$1$ |
$1$ |
\( 2^{6} \cdot 5^{2} \cdot 13 \) |
\( - 2^{16} \cdot 5^{2} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$52$ |
$2$ |
$0$ |
$0.557654832$ |
$1$ |
|
$4$ |
$4608$ |
$0.090431$ |
$-2500/13$ |
$0.84551$ |
$2.45752$ |
$[0, 1, 0, -33, 223]$ |
\(y^2=x^3+x^2-33x+223\) |
52.2.0.a.1 |
$[(-1, 16)]$ |
20800.u1 |
20800o1 |
20800.u |
20800o |
$2$ |
$2$ |
\( 2^{6} \cdot 5^{2} \cdot 13 \) |
\( 2^{18} \cdot 5^{7} \cdot 13 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.3 |
2B |
$520$ |
$48$ |
$0$ |
$2.337458199$ |
$1$ |
|
$5$ |
$24576$ |
$0.882825$ |
$117649/65$ |
$0.95681$ |
$3.40035$ |
$[0, 1, 0, -1633, 4863]$ |
\(y^2=x^3+x^2-1633x+4863\) |
2.3.0.a.1, 4.6.0.b.1, 40.12.0-4.b.1.3, 104.12.0.?, 130.6.0.?, $\ldots$ |
$[(67, 448)]$ |
20800.u2 |
20800o2 |
20800.u |
20800o |
$2$ |
$2$ |
\( 2^{6} \cdot 5^{2} \cdot 13 \) |
\( - 2^{18} \cdot 5^{8} \cdot 13^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.5 |
2B |
$520$ |
$48$ |
$0$ |
$1.168729099$ |
$1$ |
|
$7$ |
$49152$ |
$1.229399$ |
$6967871/4225$ |
$0.89914$ |
$3.81084$ |
$[0, 1, 0, 6367, 44863]$ |
\(y^2=x^3+x^2+6367x+44863\) |
2.3.0.a.1, 4.6.0.a.1, 20.12.0-4.a.1.1, 52.12.0-4.a.1.2, 260.24.0.?, $\ldots$ |
$[(19, 416)]$ |
20800.v1 |
20800cq2 |
20800.v |
20800cq |
$2$ |
$2$ |
\( 2^{6} \cdot 5^{2} \cdot 13 \) |
\( 2^{12} \cdot 5^{7} \cdot 13 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.3 |
2B |
$520$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$36864$ |
$0.908351$ |
$1111934656/65$ |
$0.93766$ |
$3.90274$ |
$[0, 1, 0, -8633, 305863]$ |
\(y^2=x^3+x^2-8633x+305863\) |
2.3.0.a.1, 4.6.0.b.1, 40.12.0-4.b.1.3, 104.12.0.?, 130.6.0.?, $\ldots$ |
$[ ]$ |
20800.v2 |
20800cq1 |
20800.v |
20800cq |
$2$ |
$2$ |
\( 2^{6} \cdot 5^{2} \cdot 13 \) |
\( - 2^{6} \cdot 5^{8} \cdot 13^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.5 |
2B |
$520$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$18432$ |
$0.561778$ |
$-14526784/4225$ |
$0.88671$ |
$3.08912$ |
$[0, 1, 0, -508, 5238]$ |
\(y^2=x^3+x^2-508x+5238\) |
2.3.0.a.1, 4.6.0.a.1, 20.12.0-4.a.1.1, 52.12.0-4.a.1.2, 260.24.0.?, $\ldots$ |
$[ ]$ |
20800.w1 |
20800be3 |
20800.w |
20800be |
$4$ |
$6$ |
\( 2^{6} \cdot 5^{2} \cdot 13 \) |
\( 2^{30} \cdot 5^{7} \cdot 13^{3} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.6.0.3, 3.4.0.1 |
2B, 3B |
$1560$ |
$384$ |
$9$ |
$1$ |
$1$ |
|
$1$ |
$331776$ |
$2.074890$ |
$988345570681/44994560$ |
$0.95432$ |
$5.00393$ |
$[0, 1, 0, -332033, -70795937]$ |
\(y^2=x^3+x^2-332033x-70795937\) |
2.3.0.a.1, 3.4.0.a.1, 4.6.0.b.1, 6.12.0.a.1, 12.24.0.f.1, $\ldots$ |
$[ ]$ |
20800.w2 |
20800be1 |
20800.w |
20800be |
$4$ |
$6$ |
\( 2^{6} \cdot 5^{2} \cdot 13 \) |
\( 2^{22} \cdot 5^{9} \cdot 13 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.6.0.3, 3.4.0.1 |
2B, 3B |
$1560$ |
$384$ |
$9$ |
$1$ |
$1$ |
|
$1$ |
$110592$ |
$1.525583$ |
$3803721481/26000$ |
$0.90619$ |
$4.44472$ |
$[0, 1, 0, -52033, 4524063]$ |
\(y^2=x^3+x^2-52033x+4524063\) |
2.3.0.a.1, 3.4.0.a.1, 4.6.0.b.1, 6.12.0.a.1, 12.24.0.f.1, $\ldots$ |
$[ ]$ |
20800.w3 |
20800be2 |
20800.w |
20800be |
$4$ |
$6$ |
\( 2^{6} \cdot 5^{2} \cdot 13 \) |
\( - 2^{20} \cdot 5^{12} \cdot 13^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.6.0.5, 3.4.0.1 |
2B, 3B |
$1560$ |
$384$ |
$9$ |
$1$ |
$1$ |
|
$1$ |
$221184$ |
$1.872156$ |
$-217081801/10562500$ |
$0.97746$ |
$4.60364$ |
$[0, 1, 0, -20033, 10060063]$ |
\(y^2=x^3+x^2-20033x+10060063\) |
2.3.0.a.1, 3.4.0.a.1, 4.6.0.a.1, 6.12.0.a.1, 12.48.0.b.1, $\ldots$ |
$[ ]$ |
20800.w4 |
20800be4 |
20800.w |
20800be |
$4$ |
$6$ |
\( 2^{6} \cdot 5^{2} \cdot 13 \) |
\( - 2^{24} \cdot 5^{8} \cdot 13^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.6.0.5, 3.4.0.1 |
2B, 3B |
$1560$ |
$384$ |
$9$ |
$1$ |
$1$ |
|
$1$ |
$663552$ |
$2.421463$ |
$157376536199/7722894400$ |
$1.01877$ |
$5.26452$ |
$[0, 1, 0, 179967, -268939937]$ |
\(y^2=x^3+x^2+179967x-268939937\) |
2.3.0.a.1, 3.4.0.a.1, 4.6.0.a.1, 6.12.0.a.1, 12.48.0.b.2, $\ldots$ |
$[ ]$ |
20800.x1 |
20800dc2 |
20800.x |
20800dc |
$2$ |
$3$ |
\( 2^{6} \cdot 5^{2} \cdot 13 \) |
\( 2^{6} \cdot 5^{2} \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1560$ |
$16$ |
$0$ |
$0.298567990$ |
$1$ |
|
$4$ |
$5184$ |
$0.121455$ |
$671088640/2197$ |
$1.15089$ |
$2.78618$ |
$[0, -1, 0, -213, 1267]$ |
\(y^2=x^3-x^2-213x+1267\) |
3.4.0.a.1, 26.2.0.a.1, 78.8.0.?, 120.8.0.?, 1560.16.0.? |
$[(6, 13)]$ |
20800.x2 |
20800dc1 |
20800.x |
20800dc |
$2$ |
$3$ |
\( 2^{6} \cdot 5^{2} \cdot 13 \) |
\( 2^{6} \cdot 5^{2} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$1560$ |
$16$ |
$0$ |
$0.895703971$ |
$1$ |
|
$2$ |
$1728$ |
$-0.427851$ |
$163840/13$ |
$0.79946$ |
$1.94961$ |
$[0, -1, 0, -13, -13]$ |
\(y^2=x^3-x^2-13x-13\) |
3.4.0.a.1, 26.2.0.a.1, 78.8.0.?, 120.8.0.?, 1560.16.0.? |
$[(-2, 1)]$ |
20800.y1 |
20800bk2 |
20800.y |
20800bk |
$2$ |
$3$ |
\( 2^{6} \cdot 5^{2} \cdot 13 \) |
\( 2^{6} \cdot 5^{8} \cdot 13^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$312$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$25920$ |
$0.926174$ |
$671088640/2197$ |
$1.15089$ |
$3.75741$ |
$[0, -1, 0, -5333, -147713]$ |
\(y^2=x^3-x^2-5333x-147713\) |
3.4.0.a.1, 24.8.0-3.a.1.1, 26.2.0.a.1, 78.8.0.?, 312.16.0.? |
$[ ]$ |
20800.y2 |
20800bk1 |
20800.y |
20800bk |
$2$ |
$3$ |
\( 2^{6} \cdot 5^{2} \cdot 13 \) |
\( 2^{6} \cdot 5^{8} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$312$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$8640$ |
$0.376868$ |
$163840/13$ |
$0.79946$ |
$2.92084$ |
$[0, -1, 0, -333, 2287]$ |
\(y^2=x^3-x^2-333x+2287\) |
3.4.0.a.1, 24.8.0-3.a.1.2, 26.2.0.a.1, 78.8.0.?, 312.16.0.? |
$[ ]$ |
20800.z1 |
20800j1 |
20800.z |
20800j |
$1$ |
$1$ |
\( 2^{6} \cdot 5^{2} \cdot 13 \) |
\( 2^{6} \cdot 5^{10} \cdot 13^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$26$ |
$2$ |
$0$ |
$14.84641974$ |
$1$ |
|
$0$ |
$120960$ |
$1.968346$ |
$2588953638400/62748517$ |
$0.99559$ |
$4.91169$ |
$[0, -1, 0, -244583, -45490463]$ |
\(y^2=x^3-x^2-244583x-45490463\) |
26.2.0.a.1 |
$[(-3585168/107, 664934507/107)]$ |
20800.ba1 |
20800ed1 |
20800.ba |
20800ed |
$1$ |
$1$ |
\( 2^{6} \cdot 5^{2} \cdot 13 \) |
\( 2^{14} \cdot 5^{8} \cdot 13 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$26$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$11520$ |
$0.799257$ |
$40960/13$ |
$0.73431$ |
$3.33912$ |
$[0, -1, 0, -1333, 13037]$ |
\(y^2=x^3-x^2-1333x+13037\) |
26.2.0.a.1 |
$[ ]$ |
20800.bb1 |
20800i1 |
20800.bb |
20800i |
$1$ |
$1$ |
\( 2^{6} \cdot 5^{2} \cdot 13 \) |
\( 2^{14} \cdot 5^{2} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$26$ |
$2$ |
$0$ |
$1.953049446$ |
$1$ |
|
$2$ |
$2304$ |
$-0.005462$ |
$40960/13$ |
$0.73431$ |
$2.36789$ |
$[0, -1, 0, -53, -83]$ |
\(y^2=x^3-x^2-53x-83\) |
26.2.0.a.1 |
$[(-4, 7)]$ |
20800.bc1 |
20800by1 |
20800.bc |
20800by |
$1$ |
$1$ |
\( 2^{6} \cdot 5^{2} \cdot 13 \) |
\( 2^{6} \cdot 5^{4} \cdot 13^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$26$ |
$2$ |
$0$ |
$0.215687871$ |
$1$ |
|
$4$ |
$24192$ |
$1.163628$ |
$2588953638400/62748517$ |
$0.99559$ |
$3.94047$ |
$[0, -1, 0, -9783, 367837]$ |
\(y^2=x^3-x^2-9783x+367837\) |
26.2.0.a.1 |
$[(-68, 845)]$ |
20800.bd1 |
20800db3 |
20800.bd |
20800db |
$3$ |
$9$ |
\( 2^{6} \cdot 5^{2} \cdot 13 \) |
\( - 2^{27} \cdot 5^{6} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$4680$ |
$144$ |
$3$ |
$2.010370350$ |
$1$ |
|
$2$ |
$124416$ |
$1.898827$ |
$-10730978619193/6656$ |
$1.02193$ |
$5.24379$ |
$[0, -1, 0, -735233, 242898337]$ |
\(y^2=x^3-x^2-735233x+242898337\) |
3.4.0.a.1, 9.12.0.a.1, 104.2.0.?, 117.36.0.?, 120.8.0.?, $\ldots$ |
$[(341, 5632)]$ |
20800.bd2 |
20800db2 |
20800.bd |
20800db |
$3$ |
$9$ |
\( 2^{6} \cdot 5^{2} \cdot 13 \) |
\( - 2^{21} \cdot 5^{6} \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.12.0.1 |
3Cs |
$4680$ |
$144$ |
$3$ |
$0.670123450$ |
$1$ |
|
$4$ |
$41472$ |
$1.349520$ |
$-10218313/17576$ |
$0.94717$ |
$3.98808$ |
$[0, -1, 0, -7233, 474337]$ |
\(y^2=x^3-x^2-7233x+474337\) |
3.12.0.a.1, 104.2.0.?, 117.36.0.?, 120.24.0.?, 312.24.1.?, $\ldots$ |
$[(-59, 832)]$ |
20800.bd3 |
20800db1 |
20800.bd |
20800db |
$3$ |
$9$ |
\( 2^{6} \cdot 5^{2} \cdot 13 \) |
\( - 2^{19} \cdot 5^{6} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$4680$ |
$144$ |
$3$ |
$2.010370350$ |
$1$ |
|
$2$ |
$13824$ |
$0.800214$ |
$12167/26$ |
$0.84415$ |
$3.27177$ |
$[0, -1, 0, 767, -13663]$ |
\(y^2=x^3-x^2+767x-13663\) |
3.4.0.a.1, 9.12.0.a.1, 104.2.0.?, 117.36.0.?, 120.8.0.?, $\ldots$ |
$[(53, 416)]$ |
20800.be1 |
20800dr1 |
20800.be |
20800dr |
$1$ |
$1$ |
\( 2^{6} \cdot 5^{2} \cdot 13 \) |
\( 2^{14} \cdot 5^{4} \cdot 13 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$26$ |
$2$ |
$0$ |
$2.504199950$ |
$1$ |
|
$2$ |
$4608$ |
$0.251356$ |
$25600/13$ |
$0.75726$ |
$2.64437$ |
$[0, -1, 0, -133, -163]$ |
\(y^2=x^3-x^2-133x-163\) |
26.2.0.a.1 |
$[(-4, 17)]$ |