Properties

Label 206910.cy
Number of curves $4$
Conductor $206910$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cy1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 206910.cy have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1\)
\(5\)\(1 + T\)
\(11\)\(1\)
\(19\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(23\) \( 1 - 8 T + 23 T^{2}\) 1.23.ai
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 206910.cy do not have complex multiplication.

Modular form 206910.2.a.cy

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{4} - q^{5} - 4 q^{7} + q^{8} - q^{10} + 2 q^{13} - 4 q^{14} + q^{16} - 2 q^{17} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 206910.cy

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
206910.cy1 206910be3 \([1, -1, 1, -3310583, 2319315221]\) \(3107086841064961/570\) \(736136742330\) \([2]\) \(3932160\) \(2.1128\)  
206910.cy2 206910be4 \([1, -1, 1, -239603, 24077837]\) \(1177918188481/488703750\) \(631145239455183750\) \([2]\) \(3932160\) \(2.1128\)  
206910.cy3 206910be2 \([1, -1, 1, -206933, 36270281]\) \(758800078561/324900\) \(419597943128100\) \([2, 2]\) \(1966080\) \(1.7662\)  
206910.cy4 206910be1 \([1, -1, 1, -10913, 751457]\) \(-111284641/123120\) \(-159005536343280\) \([2]\) \(983040\) \(1.4196\) \(\Gamma_0(N)\)-optimal