Learn more

Refine search


Results (31 matches)

  displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images
20691.a1 20691.a \( 3^{2} \cdot 11^{2} \cdot 19 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -4781073, -4023806328]$ \(y^2+y=x^3-4781073x-4023806328\) 5.12.0.a.2, 38.2.0.a.1, 165.24.0.?, 190.24.1.?, 6270.48.1.?
20691.a2 20691.a \( 3^{2} \cdot 11^{2} \cdot 19 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, 21417, -1377918]$ \(y^2+y=x^3+21417x-1377918\) 5.12.0.a.1, 38.2.0.a.1, 165.24.0.?, 190.24.1.?, 6270.48.1.?
20691.b1 20691.b \( 3^{2} \cdot 11^{2} \cdot 19 \) $2$ $\mathsf{trivial}$ $0.589095280$ $[0, 0, 1, -1485, 22052]$ \(y^2+y=x^3-1485x+22052\) 1254.2.0.?
20691.c1 20691.c \( 3^{2} \cdot 11^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $0.878765627$ $[0, 0, 1, -19965, 1087094]$ \(y^2+y=x^3-19965x+1087094\) 1254.2.0.?
20691.d1 20691.d \( 3^{2} \cdot 11^{2} \cdot 19 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, 11979, 1087094]$ \(y^2+y=x^3+11979x+1087094\) 22.2.0.a.1
20691.e1 20691.e \( 3^{2} \cdot 11^{2} \cdot 19 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -2541, 54238]$ \(y^2+y=x^3-2541x+54238\) 38.2.0.a.1
20691.f1 20691.f \( 3^{2} \cdot 11^{2} \cdot 19 \) $1$ $\Z/2\Z$ $0.722191639$ $[1, -1, 1, -2135, 38206]$ \(y^2+xy+y=x^3-x^2-2135x+38206\) 2.3.0.a.1, 4.6.0.e.1, 24.12.0.bq.1, 66.6.0.a.1, 88.12.0.?, $\ldots$
20691.f2 20691.f \( 3^{2} \cdot 11^{2} \cdot 19 \) $1$ $\Z/2\Z$ $1.444383279$ $[1, -1, 1, -650, 89290]$ \(y^2+xy+y=x^3-x^2-650x+89290\) 2.3.0.a.1, 4.6.0.e.1, 24.12.0.bt.1, 88.12.0.?, 132.12.0.?, $\ldots$
20691.g1 20691.g \( 3^{2} \cdot 11^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -28700, 1864294]$ \(y^2+xy+y=x^3-x^2-28700x+1864294\) 2.3.0.a.1, 4.6.0.e.1, 24.12.0.bq.1, 66.6.0.a.1, 88.12.0.?, $\ldots$
20691.g2 20691.g \( 3^{2} \cdot 11^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -8735, 4395856]$ \(y^2+xy+y=x^3-x^2-8735x+4395856\) 2.3.0.a.1, 4.6.0.e.1, 24.12.0.bt.1, 88.12.0.?, 132.12.0.?, $\ldots$
20691.h1 20691.h \( 3^{2} \cdot 11^{2} \cdot 19 \) $2$ $\mathsf{trivial}$ $0.835764218$ $[0, 0, 1, -1452, -48249]$ \(y^2+y=x^3-1452x-48249\) 1254.2.0.?
20691.i1 20691.i \( 3^{2} \cdot 11^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $20.51251636$ $[0, 0, 1, -837804, -295162893]$ \(y^2+y=x^3-837804x-295162893\) 3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 33.8.0-3.a.1.2, 38.2.0.a.1, $\ldots$
20691.i2 20691.i \( 3^{2} \cdot 11^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $6.837505454$ $[0, 0, 1, -10164, -419598]$ \(y^2+y=x^3-10164x-419598\) 3.12.0.a.1, 9.36.0.b.1, 33.24.0-3.a.1.1, 38.2.0.a.1, 99.72.0.?, $\ldots$
20691.i3 20691.i \( 3^{2} \cdot 11^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $2.279168484$ $[0, 0, 1, 726, -333]$ \(y^2+y=x^3+726x-333\) 3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 33.8.0-3.a.1.1, 38.2.0.a.1, $\ldots$
20691.j1 20691.j \( 3^{2} \cdot 11^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $0.149786715$ $[0, 0, 1, -70356, 7276365]$ \(y^2+y=x^3-70356x+7276365\) 5.15.0.a.1, 55.30.0.a.1, 570.30.1.?, 1254.2.0.?, 6270.60.3.?
20691.k1 20691.k \( 3^{2} \cdot 11^{2} \cdot 19 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -8513076, -9684842148]$ \(y^2+y=x^3-8513076x-9684842148\) 5.15.0.a.1, 55.30.0.a.1, 570.30.1.?, 1254.2.0.?, 6270.60.3.?
20691.l1 20691.l \( 3^{2} \cdot 11^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $14.33288683$ $[0, 0, 1, -32738970, -72101721123]$ \(y^2+y=x^3-32738970x-72101721123\) 3.4.0.a.1, 33.8.0-3.a.1.2, 114.8.0.?, 1254.16.0.?
20691.l2 20691.l \( 3^{2} \cdot 11^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $4.777628943$ $[0, 0, 1, -395670, -103271292]$ \(y^2+y=x^3-395670x-103271292\) 3.4.0.a.1, 33.8.0-3.a.1.1, 114.8.0.?, 1254.16.0.?
20691.m1 20691.m \( 3^{2} \cdot 11^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $1.519151908$ $[0, 0, 1, -29766, 2311614]$ \(y^2+y=x^3-29766x+2311614\) 3.4.0.a.1, 6.8.0-3.a.1.2, 22.2.0.a.1, 33.8.0-3.a.1.1, 66.16.0-66.a.1.2
20691.m2 20691.m \( 3^{2} \cdot 11^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $4.557455725$ $[0, 0, 1, 209814, -13368897]$ \(y^2+y=x^3+209814x-13368897\) 3.4.0.a.1, 6.8.0-3.a.1.1, 22.2.0.a.1, 33.8.0-3.a.1.2, 66.16.0-66.a.1.3
20691.n1 20691.n \( 3^{2} \cdot 11^{2} \cdot 19 \) $1$ $\Z/2\Z$ $1.862680604$ $[1, -1, 0, -237, -1336]$ \(y^2+xy=x^3-x^2-237x-1336\) 2.3.0.a.1, 4.6.0.e.1, 24.12.0.bq.1, 66.6.0.a.1, 88.12.0.?, $\ldots$
20691.n2 20691.n \( 3^{2} \cdot 11^{2} \cdot 19 \) $1$ $\Z/2\Z$ $3.725361208$ $[1, -1, 0, -72, -3283]$ \(y^2+xy=x^3-x^2-72x-3283\) 2.3.0.a.1, 4.6.0.e.1, 24.12.0.bt.1, 88.12.0.?, 132.12.0.?, $\ldots$
20691.o1 20691.o \( 3^{2} \cdot 11^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -258297, -50077648]$ \(y^2+xy=x^3-x^2-258297x-50077648\) 2.3.0.a.1, 4.6.0.e.1, 24.12.0.bq.1, 66.6.0.a.1, 88.12.0.?, $\ldots$
20691.o2 20691.o \( 3^{2} \cdot 11^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -78612, -118609507]$ \(y^2+xy=x^3-x^2-78612x-118609507\) 2.3.0.a.1, 4.6.0.e.1, 24.12.0.bt.1, 88.12.0.?, 132.12.0.?, $\ldots$
20691.p1 20691.p \( 3^{2} \cdot 11^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -110556, 14176377]$ \(y^2+xy=x^3-x^2-110556x+14176377\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0.z.1, 76.12.0.?, 88.12.0.?, $\ldots$
20691.p2 20691.p \( 3^{2} \cdot 11^{2} \cdot 19 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, -1, 0, -7101, 209952]$ \(y^2+xy=x^3-x^2-7101x+209952\) 2.6.0.a.1, 12.12.0.b.1, 44.12.0-2.a.1.1, 76.12.0.?, 132.24.0.?, $\ldots$
20691.p3 20691.p \( 3^{2} \cdot 11^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -1656, -22005]$ \(y^2+xy=x^3-x^2-1656x-22005\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0.z.1, 44.12.0-4.c.1.2, 114.6.0.?, $\ldots$
20691.p4 20691.p \( 3^{2} \cdot 11^{2} \cdot 19 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, 9234, 1023435]$ \(y^2+xy=x^3-x^2+9234x+1023435\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 12.12.0.g.1, 44.12.0-4.c.1.1, $\ldots$
20691.q1 20691.q \( 3^{2} \cdot 11^{2} \cdot 19 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -165, -817]$ \(y^2+y=x^3-165x-817\) 1254.2.0.?
20691.r1 20691.r \( 3^{2} \cdot 11^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $23.91502063$ $[0, 0, 1, -179685, -29351545]$ \(y^2+y=x^3-179685x-29351545\) 1254.2.0.?
20691.s1 20691.s \( 3^{2} \cdot 11^{2} \cdot 19 \) $1$ $\mathsf{trivial}$ $3.348961293$ $[0, 0, 1, 99, -817]$ \(y^2+y=x^3+99x-817\) 22.2.0.a.1
  displayed columns for results