Show commands for:
SageMath
sage: E = EllipticCurve("ev1")
sage: E.isogeny_class()
Elliptic curves in class 206400.ev
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
206400.ev1 | 206400fd4 | [0, -1, 0, -1341633, -593608863] | [2] | 3538944 | |
206400.ev2 | 206400fd2 | [0, -1, 0, -141633, 5191137] | [2, 2] | 1769472 | |
206400.ev3 | 206400fd1 | [0, -1, 0, -109633, 13991137] | [2] | 884736 | \(\Gamma_0(N)\)-optimal |
206400.ev4 | 206400fd3 | [0, -1, 0, 546367, 40279137] | [2] | 3538944 |
Rank
sage: E.rank()
The elliptic curves in class 206400.ev have rank \(1\).
Complex multiplication
The elliptic curves in class 206400.ev do not have complex multiplication.Modular form 206400.2.a.ev
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.