Learn more

The results below are complete, since the LMFDB contains all elliptic curves with conductor at most 500000

Refine search


Results (1-50 of 452 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
206400.a1 206400.a \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 43 \) $1$ $\Z/2\Z$ $14.85962631$ $[0, -1, 0, -8806433, -10055911263]$ \(y^2=x^3-x^2-8806433x-10055911263\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.m.1, 20.12.0-4.c.1.1, 40.24.0-8.m.1.3, $\ldots$ $[(20253307/69, 56371732300/69)]$
206400.a2 206400.a \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 43 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $7.429813155$ $[0, -1, 0, -550433, -156967263]$ \(y^2=x^3-x^2-550433x-156967263\) 2.6.0.a.1, 8.12.0.b.1, 20.12.0-2.a.1.1, 40.24.0-8.b.1.1, 516.12.0.?, $\ldots$ $[(13003/3, 1225900/3)]$
206400.a3 206400.a \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 43 \) $1$ $\Z/2\Z$ $14.85962631$ $[0, -1, 0, -486433, -194919263]$ \(y^2=x^3-x^2-486433x-194919263\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.d.1, 20.12.0-4.c.1.2, 40.24.0-8.d.1.2, $\ldots$ $[(21754363/123, 84800257100/123)]$
206400.a4 206400.a \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 43 \) $1$ $\Z/2\Z$ $3.714906577$ $[0, -1, 0, -38433, -1831263]$ \(y^2=x^3-x^2-38433x-1831263\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.m.1, 40.24.0-8.m.1.4, 258.6.0.?, $\ldots$ $[(307, 3900)]$
206400.b1 206400.b \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 43 \) $2$ $\mathsf{trivial}$ $1.656312312$ $[0, -1, 0, -1033, 13417]$ \(y^2=x^3-x^2-1033x+13417\) 86.2.0.? $[(16, 27), (43, 216)]$
206400.c1 206400.c \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 43 \) $1$ $\mathsf{trivial}$ $2.343070645$ $[0, -1, 0, 967, -41313]$ \(y^2=x^3-x^2+967x-41313\) 86.2.0.? $[(26, 27)]$
206400.d1 206400.d \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 43 \) $1$ $\Z/2\Z$ $3.532249162$ $[0, -1, 0, -305633, -59860863]$ \(y^2=x^3-x^2-305633x-59860863\) 2.3.0.a.1, 20.6.0.b.1, 258.6.0.?, 2580.12.0.? $[(-368, 1625)]$
206400.d2 206400.d \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 43 \) $1$ $\Z/2\Z$ $1.766124581$ $[0, -1, 0, 334367, -278100863]$ \(y^2=x^3-x^2+334367x-278100863\) 2.3.0.a.1, 20.6.0.a.1, 516.6.0.?, 2580.12.0.? $[(973, 31104)]$
206400.e1 206400.e \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 43 \) $2$ $\mathsf{trivial}$ $2.491753610$ $[0, -1, 0, -83, 477]$ \(y^2=x^3-x^2-83x+477\) 86.2.0.? $[(-4, 27), (-43/2, 27/2)]$
206400.f1 206400.f \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 43 \) $1$ $\mathsf{trivial}$ $21.14957012$ $[0, -1, 0, -1800033, -928941813]$ \(y^2=x^3-x^2-1800033x-928941813\) 86.2.0.? $[(7746572742/523, 681020119906407/523)]$
206400.g1 206400.g \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 43 \) $1$ $\Z/2\Z$ $1.161013848$ $[0, -1, 0, -21633, 151137]$ \(y^2=x^3-x^2-21633x+151137\) 2.3.0.a.1, 24.6.0.a.1, 860.6.0.?, 5160.12.0.? $[(437, 8600)]$
206400.g2 206400.g \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 43 \) $1$ $\Z/2\Z$ $2.322027696$ $[0, -1, 0, 5367, 16137]$ \(y^2=x^3-x^2+5367x+16137\) 2.3.0.a.1, 24.6.0.d.1, 430.6.0.?, 5160.12.0.? $[(51, 648)]$
206400.h1 206400.h \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 43 \) $1$ $\Z/2\Z$ $1.384814295$ $[0, -1, 0, -276833, 41601537]$ \(y^2=x^3-x^2-276833x+41601537\) 2.3.0.a.1, 40.6.0.b.1, 344.6.0.?, 860.6.0.?, 1720.12.0.? $[(-83, 8000)]$
206400.h2 206400.h \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 43 \) $1$ $\Z/2\Z$ $2.769628591$ $[0, -1, 0, 43167, 4161537]$ \(y^2=x^3-x^2+43167x+4161537\) 2.3.0.a.1, 40.6.0.c.1, 344.6.0.?, 430.6.0.?, 1720.12.0.? $[(167, 4000)]$
206400.i1 206400.i \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 43 \) $1$ $\Z/2\Z$ $1.060566224$ $[0, -1, 0, -109633, -3552863]$ \(y^2=x^3-x^2-109633x-3552863\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.3, 20.12.0-4.c.1.1, 40.24.0-40.v.1.4, $\ldots$ $[(-227, 3096)]$
206400.i2 206400.i \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 43 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $2.121132449$ $[0, -1, 0, -64633, 6302137]$ \(y^2=x^3-x^2-64633x+6302137\) 2.6.0.a.1, 8.12.0-2.a.1.1, 20.12.0-2.a.1.1, 40.24.0-40.a.1.3, 172.12.0.?, $\ldots$ $[(112, 675)]$
206400.i3 206400.i \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 43 \) $1$ $\Z/2\Z$ $4.242264899$ $[0, -1, 0, -64508, 6327762]$ \(y^2=x^3-x^2-64508x+6327762\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.4, 40.24.0-40.bb.1.14, 344.24.0.?, $\ldots$ $[(183, 786)]$
206400.i4 206400.i \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 43 \) $1$ $\Z/2\Z$ $4.242264899$ $[0, -1, 0, -21633, 14515137]$ \(y^2=x^3-x^2-21633x+14515137\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.2, 20.12.0-4.c.1.2, 40.24.0-40.bb.1.9, $\ldots$ $[(456, 9963)]$
206400.j1 206400.j \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 43 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -11073, -328383]$ \(y^2=x^3-x^2-11073x-328383\) 2.3.0.a.1, 40.6.0.b.1, 344.6.0.?, 860.6.0.?, 1720.12.0.? $[ ]$
206400.j2 206400.j \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 43 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 1727, -33983]$ \(y^2=x^3-x^2+1727x-33983\) 2.3.0.a.1, 40.6.0.c.1, 344.6.0.?, 430.6.0.?, 1720.12.0.? $[ ]$
206400.k1 206400.k \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 43 \) $1$ $\mathsf{trivial}$ $6.195960531$ $[0, -1, 0, -2083, -55463]$ \(y^2=x^3-x^2-2083x-55463\) 86.2.0.? $[(2437/2, 119853/2)]$
206400.l1 206400.l \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 43 \) $1$ $\Z/2\Z$ $1.834606011$ $[0, -1, 0, -36033, 2591937]$ \(y^2=x^3-x^2-36033x+2591937\) 2.3.0.a.1, 20.6.0.b.1, 258.6.0.?, 2580.12.0.? $[(47, 1000)]$
206400.l2 206400.l \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 43 \) $1$ $\Z/2\Z$ $3.669212022$ $[0, -1, 0, 3967, 7991937]$ \(y^2=x^3-x^2+3967x+7991937\) 2.3.0.a.1, 20.6.0.a.1, 516.6.0.?, 2580.12.0.? $[(207, 4200)]$
206400.m1 206400.m \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 43 \) $1$ $\mathsf{trivial}$ $1.858379911$ $[0, -1, 0, -25833, -1625463]$ \(y^2=x^3-x^2-25833x-1625463\) 86.2.0.? $[(192, 675)]$
206400.n1 206400.n \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 43 \) $1$ $\Z/2\Z$ $6.186115618$ $[0, -1, 0, -917633, -338032863]$ \(y^2=x^3-x^2-917633x-338032863\) 2.3.0.a.1, 4.12.0-4.c.1.2, 120.24.0.?, 1032.24.0.?, 1720.24.0.?, $\ldots$ $[(2363, 103356)]$
206400.n2 206400.n \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 43 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $3.093057809$ $[0, -1, 0, -57633, -5212863]$ \(y^2=x^3-x^2-57633x-5212863\) 2.6.0.a.1, 4.12.0-2.a.1.1, 120.24.0.?, 516.24.0.?, 1720.24.0.?, $\ldots$ $[(-128, 225)]$
206400.n3 206400.n \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 43 \) $1$ $\Z/2\Z$ $1.546528904$ $[0, -1, 0, -7633, 137137]$ \(y^2=x^3-x^2-7633x+137137\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 120.24.0.?, 258.6.0.?, $\ldots$ $[(-3, 400)]$
206400.n4 206400.n \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 43 \) $1$ $\Z/4\Z$ $6.186115618$ $[0, -1, 0, 2367, -15592863]$ \(y^2=x^3-x^2+2367x-15592863\) 2.3.0.a.1, 4.12.0-4.c.1.1, 120.24.0.?, 1032.24.0.?, 1720.24.0.?, $\ldots$ $[(2272, 108225)]$
206400.o1 206400.o \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 43 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -23233, -1493663]$ \(y^2=x^3-x^2-23233x-1493663\) 516.2.0.? $[ ]$
206400.p1 206400.p \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 43 \) $1$ $\mathsf{trivial}$ $0.639721474$ $[0, -1, 0, -33, -2463]$ \(y^2=x^3-x^2-33x-2463\) 1032.2.0.? $[(17, 40)]$
206400.q1 206400.q \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 43 \) $1$ $\mathsf{trivial}$ $4.696835356$ $[0, -1, 0, 1371167, 56785537]$ \(y^2=x^3-x^2+1371167x+56785537\) 1720.2.0.? $[(97/4, 516375/4)]$
206400.r1 206400.r \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 43 \) $2$ $\mathsf{trivial}$ $0.639197411$ $[0, -1, 0, -79553, 8662977]$ \(y^2=x^3-x^2-79553x+8662977\) 1720.2.0.? $[(161, 48), (97, 1360)]$
206400.s1 206400.s \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 43 \) $1$ $\mathsf{trivial}$ $4.354443287$ $[0, -1, 0, -40033, 20547937]$ \(y^2=x^3-x^2-40033x+20547937\) 516.2.0.? $[(161, 4272)]$
206400.t1 206400.t \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 43 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, 550367, 883871137]$ \(y^2=x^3-x^2+550367x+883871137\) 1720.2.0.? $[ ]$
206400.u1 206400.u \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 43 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -11233, 462337]$ \(y^2=x^3-x^2-11233x+462337\) 516.2.0.? $[ ]$
206400.v1 206400.v \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 43 \) $1$ $\mathsf{trivial}$ $8.307634058$ $[0, -1, 0, -1988833, -1078894463]$ \(y^2=x^3-x^2-1988833x-1078894463\) 1720.2.0.? $[(65497/4, 15592875/4)]$
206400.w1 206400.w \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 43 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, 192367923967, 214484193764363937]$ \(y^2=x^3-x^2+192367923967x+214484193764363937\) 1720.2.0.? $[ ]$
206400.x1 206400.x \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 43 \) $1$ $\mathsf{trivial}$ $1.165812438$ $[0, -1, 0, -6925633, -7055220863]$ \(y^2=x^3-x^2-6925633x-7055220863\) 1720.2.0.? $[(45457, 9675000)]$
206400.y1 206400.y \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 43 \) $2$ $\mathsf{trivial}$ $2.825258137$ $[0, -1, 0, 54847, -476223]$ \(y^2=x^3-x^2+54847x-476223\) 1720.2.0.? $[(227, 4860), (177, 3840)]$
206400.z1 206400.z \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 43 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -833, 309537]$ \(y^2=x^3-x^2-833x+309537\) 1032.2.0.? $[ ]$
206400.ba1 206400.ba \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 43 \) $1$ $\mathsf{trivial}$ $2.087217735$ $[0, -1, 0, 181467, -140694813]$ \(y^2=x^3-x^2+181467x-140694813\) 86.2.0.? $[(702, 18225)]$
206400.bb1 206400.bb \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 43 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, 13167, 55191537]$ \(y^2=x^3-x^2+13167x+55191537\) 86.2.0.? $[ ]$
206400.bc1 206400.bc \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 43 \) $2$ $\Z/2\Z$ $3.923226030$ $[0, -1, 0, -3233, -9663]$ \(y^2=x^3-x^2-3233x-9663\) 2.3.0.a.1, 8.6.0.d.1, 258.6.0.?, 1032.12.0.? $[(61, 128), (87, 600)]$
206400.bc2 206400.bc \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 43 \) $2$ $\Z/2\Z$ $3.923226030$ $[0, -1, 0, 12767, -89663]$ \(y^2=x^3-x^2+12767x-89663\) 2.3.0.a.1, 8.6.0.a.1, 516.6.0.?, 1032.12.0.? $[(93, 1376), (733, 20064)]$
206400.bd1 206400.bd \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 43 \) $1$ $\mathsf{trivial}$ $3.626597167$ $[0, -1, 0, -16513, -843743]$ \(y^2=x^3-x^2-16513x-843743\) 86.2.0.? $[(151, 288)]$
206400.be1 206400.be \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 43 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -72133, 49428637]$ \(y^2=x^3-x^2-72133x+49428637\) 86.2.0.? $[ ]$
206400.bf1 206400.bf \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 43 \) $1$ $\Z/2\Z$ $1.563885252$ $[0, -1, 0, -2137633, 1203647137]$ \(y^2=x^3-x^2-2137633x+1203647137\) 2.3.0.a.1, 40.6.0.b.1, 516.6.0.?, 5160.12.0.? $[(697, 7200)]$
206400.bf2 206400.bf \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 43 \) $1$ $\Z/2\Z$ $3.127770504$ $[0, -1, 0, -137633, 17647137]$ \(y^2=x^3-x^2-137633x+17647137\) 2.3.0.a.1, 40.6.0.c.1, 258.6.0.?, 5160.12.0.? $[(153, 384)]$
206400.bg1 206400.bg \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 43 \) $1$ $\Z/2\Z$ $2.220430212$ $[0, -1, 0, -380033, 87419937]$ \(y^2=x^3-x^2-380033x+87419937\) 2.3.0.a.1, 40.6.0.b.1, 516.6.0.?, 5160.12.0.? $[(272, 2025)]$
206400.bg2 206400.bg \( 2^{6} \cdot 3 \cdot 5^{2} \cdot 43 \) $1$ $\Z/2\Z$ $4.440860425$ $[0, -1, 0, -60033, -3780063]$ \(y^2=x^3-x^2-60033x-3780063\) 2.3.0.a.1, 40.6.0.c.1, 258.6.0.?, 5160.12.0.? $[(-587/2, 10875/2)]$
Next   displayed columns for results