Properties

Label 20510.c
Number of curves 2
Conductor 20510
CM no
Rank 0
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath

sage: E = EllipticCurve("20510.c1")
sage: E.isogeny_class()

Elliptic curves in class 20510.c

sage: E.isogeny_class().curves
LMFDB label Cremona label Weierstrass coefficients Torsion order Modular degree Optimality
20510.c1 20510e2 [1, -1, 1, -5545962, -5028652761] 1 2765952  
20510.c2 20510e1 [1, -1, 1, 9588, 2333199] 7 395136 \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()

The elliptic curves in class 20510.c have rank \(0\).

Modular form 20510.2.a.c

sage: E.q_eigenform(10)
\( q + q^{2} - 3q^{3} + q^{4} + q^{5} - 3q^{6} + q^{7} + q^{8} + 6q^{9} + q^{10} + 5q^{11} - 3q^{12} + 7q^{13} + q^{14} - 3q^{15} + q^{16} - 3q^{17} + 6q^{18} - 8q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 7 \\ 7 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels.