# Properties

 Label 20449d Number of curves $2$ Conductor $20449$ CM no Rank $0$ Graph

# Related objects

Show commands for: SageMath
sage: E = EllipticCurve("d1")

sage: E.isogeny_class()

## Elliptic curves in class 20449d

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
20449.g2 20449d1 [1, 1, 0, -5073, -141214] [] 14040 $$\Gamma_0(N)$$-optimal
20449.g1 20449d2 [1, 1, 0, -51548, 17588069] [] 154440

## Rank

sage: E.rank()

The elliptic curves in class 20449d have rank $$0$$.

## Complex multiplication

The elliptic curves in class 20449d do not have complex multiplication.

## Modular form 20449.2.a.d

sage: E.q_eigenform(10)

$$q + q^{2} + 2q^{3} - q^{4} - q^{5} + 2q^{6} - 2q^{7} - 3q^{8} + q^{9} - q^{10} - 2q^{12} - 2q^{14} - 2q^{15} - q^{16} + 5q^{17} + q^{18} + 6q^{19} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the Cremona numbering.

$$\left(\begin{array}{rr} 1 & 11 \\ 11 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with Cremona labels.