Properties

Label 203840eb
Number of curves $1$
Conductor $203840$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("eb1")
 
E.isogeny_class()
 

Elliptic curves in class 203840eb

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
203840.br1 203840eb1 \([0, -1, 0, -4589601, -3969890399]\) \(-693346671296498/40610171875\) \(-626228738250752000000\) \([]\) \(9584640\) \(2.7465\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 203840eb1 has rank \(0\).

Complex multiplication

The elliptic curves in class 203840eb do not have complex multiplication.

Modular form 203840.2.a.eb

sage: E.q_eigenform(10)
 
\(q - q^{3} - q^{5} - 2 q^{9} - 5 q^{11} - q^{13} + q^{15} + 2 q^{17} - 6 q^{19} + O(q^{20})\) Copy content Toggle raw display