Properties

 Label 202800.je Number of curves $2$ Conductor $202800$ CM no Rank $0$ Graph

Related objects

Show commands: SageMath
sage: E = EllipticCurve("je1")

sage: E.isogeny_class()

Elliptic curves in class 202800.je

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
202800.je1 202800ih2 $$[0, 1, 0, -846408, -295432812]$$ $$434163602/7605$$ $$1174652238240000000$$ $$[2]$$ $$3096576$$ $$2.2638$$
202800.je2 202800ih1 $$[0, 1, 0, -1408, -13202812]$$ $$-4/975$$ $$-75298220400000000$$ $$[2]$$ $$1548288$$ $$1.9172$$ $$\Gamma_0(N)$$-optimal

Rank

sage: E.rank()

The elliptic curves in class 202800.je have rank $$0$$.

Complex multiplication

The elliptic curves in class 202800.je do not have complex multiplication.

Modular form 202800.2.a.je

sage: E.q_eigenform(10)

$$q + q^{3} + 2q^{7} + q^{9} + 4q^{17} + 6q^{19} + O(q^{20})$$

Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the LMFDB numbering.

$$\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)$$

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels.