Properties

Label 202675.k
Number of curves $1$
Conductor $202675$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("k1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 202675.k1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(5\)\(1\)
\(11\)\(1\)
\(67\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + T + 2 T^{2}\) 1.2.b
\(3\) \( 1 - T + 3 T^{2}\) 1.3.ab
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(13\) \( 1 + 6 T + 13 T^{2}\) 1.13.g
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 + T + 19 T^{2}\) 1.19.b
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 202675.k do not have complex multiplication.

Modular form 202675.2.a.k

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{3} - q^{4} - q^{6} + 4 q^{7} + 3 q^{8} - 2 q^{9} - q^{12} - 6 q^{13} - 4 q^{14} - q^{16} + 2 q^{18} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 202675.k

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
202675.k1 202675k1 \([1, 0, 0, 96737, 130969642]\) \(144672215/10790417\) \(-7467141379272265625\) \([]\) \(4104000\) \(2.3010\) \(\Gamma_0(N)\)-optimal