Properties

Label 2023.b
Number of curves $1$
Conductor $2023$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("b1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 2023.b

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2023.b1 2023a1 \([1, -1, 1, -3378, -12206]\) \(610929/343\) \(2392684802263\) \([]\) \(7344\) \(1.0654\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 2023.b1 has rank \(0\).

Complex multiplication

The elliptic curves in class 2023.b do not have complex multiplication.

Modular form 2023.2.a.b

sage: E.q_eigenform(10)
 
\(q - q^{2} + 3 q^{3} - q^{4} + 4 q^{5} - 3 q^{6} - q^{7} + 3 q^{8} + 6 q^{9} - 4 q^{10} - 3 q^{12} - 2 q^{13} + q^{14} + 12 q^{15} - q^{16} - 6 q^{18} - 7 q^{19} + O(q^{20})\)  Toggle raw display