Show commands for:
SageMath
sage: E = EllipticCurve("b1")
sage: E.isogeny_class()
Elliptic curves in class 20216b
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
20216.h4 | 20216b1 | [0, 0, 0, 361, -13718] | [2] | 12096 | \(\Gamma_0(N)\)-optimal |
20216.h3 | 20216b2 | [0, 0, 0, -6859, -205770] | [2, 2] | 24192 | |
20216.h1 | 20216b3 | [0, 0, 0, -107939, -13649410] | [2] | 48384 | |
20216.h2 | 20216b4 | [0, 0, 0, -21299, 946542] | [2] | 48384 |
Rank
sage: E.rank()
The elliptic curves in class 20216b have rank \(0\).
Complex multiplication
The elliptic curves in class 20216b do not have complex multiplication.Modular form 20216.2.a.b
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.