Show commands for:
SageMath
sage: E = EllipticCurve("w1")
sage: E.isogeny_class()
Elliptic curves in class 201810.w
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
201810.w1 | 201810cb4 | [1, 0, 1, -358954, -82806034] | [2] | 1843200 | |
201810.w2 | 201810cb2 | [1, 0, 1, -22604, -1274794] | [2, 2] | 921600 | |
201810.w3 | 201810cb1 | [1, 0, 1, -3384, 47542] | [2] | 460800 | \(\Gamma_0(N)\)-optimal |
201810.w4 | 201810cb3 | [1, 0, 1, 6226, -4296178] | [2] | 1843200 |
Rank
sage: E.rank()
The elliptic curves in class 201810.w have rank \(1\).
Complex multiplication
The elliptic curves in class 201810.w do not have complex multiplication.Modular form 201810.2.a.w
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.