Properties

Label 20160t
Number of curves $4$
Conductor $20160$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("20160.er1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 20160t

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
20160.er2 20160t1 [0, 0, 0, -6732, 212336] [2] 18432 \(\Gamma_0(N)\)-optimal
20160.er3 20160t2 [0, 0, 0, -4812, 335984] [2] 36864  
20160.er1 20160t3 [0, 0, 0, -26892, -1487376] [2] 55296  
20160.er4 20160t4 [0, 0, 0, 42228, -7874064] [2] 110592  

Rank

sage: E.rank()
 

The elliptic curves in class 20160t have rank \(1\).

Modular form 20160.2.a.er

sage: E.q_eigenform(10)
 
\( q + q^{5} + q^{7} - 2q^{13} - 2q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.