Show commands for:
SageMath
sage: E = EllipticCurve("eo1")
sage: E.isogeny_class()
Elliptic curves in class 20160eo
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
20160.dp3 | 20160eo1 | [0, 0, 0, -1452, 20176] | [2] | 16384 | \(\Gamma_0(N)\)-optimal |
20160.dp2 | 20160eo2 | [0, 0, 0, -4332, -84656] | [2, 2] | 32768 | |
20160.dp1 | 20160eo3 | [0, 0, 0, -64812, -6350384] | [2] | 65536 | |
20160.dp4 | 20160eo4 | [0, 0, 0, 10068, -528176] | [2] | 65536 |
Rank
sage: E.rank()
The elliptic curves in class 20160eo have rank \(0\).
Complex multiplication
The elliptic curves in class 20160eo do not have complex multiplication.Modular form 20160.2.a.eo
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.