Properties

Label 20160cg
Number of curves 8
Conductor 20160
CM no
Rank 0
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("20160.et1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 20160cg

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
20160.et7 20160cg1 [0, 0, 0, -286572, -59024464] [2] 147456 \(\Gamma_0(N)\)-optimal
20160.et6 20160cg2 [0, 0, 0, -332652, -38767696] [2, 2] 294912  
20160.et5 20160cg3 [0, 0, 0, -848172, 228497456] [2] 442368  
20160.et4 20160cg4 [0, 0, 0, -2509932, 1503617456] [2] 589824  
20160.et8 20160cg5 [0, 0, 0, 1107348, -284719696] [2] 589824  
20160.et2 20160cg6 [0, 0, 0, -12644652, 17305081904] [2, 2] 884736  
20160.et1 20160cg7 [0, 0, 0, -202309932, 1107576977456] [2] 1769472  
20160.et3 20160cg8 [0, 0, 0, -11723052, 19934591024] [2] 1769472  

Rank

sage: E.rank()
 

The elliptic curves in class 20160cg have rank \(0\).

Modular form 20160.2.a.et

sage: E.q_eigenform(10)
 
\( q + q^{5} + q^{7} - 2q^{13} + 6q^{17} - 8q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrrrrrr} 1 & 2 & 3 & 4 & 4 & 6 & 12 & 12 \\ 2 & 1 & 6 & 2 & 2 & 3 & 6 & 6 \\ 3 & 6 & 1 & 12 & 12 & 2 & 4 & 4 \\ 4 & 2 & 12 & 1 & 4 & 6 & 3 & 12 \\ 4 & 2 & 12 & 4 & 1 & 6 & 12 & 3 \\ 6 & 3 & 2 & 6 & 6 & 1 & 2 & 2 \\ 12 & 6 & 4 & 3 & 12 & 2 & 1 & 4 \\ 12 & 6 & 4 & 12 & 3 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.