Show commands for:
SageMath
sage: E = EllipticCurve("i1")
sage: E.isogeny_class()
Elliptic curves in class 20160.i
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
20160.i1 | 20160bf3 | [0, 0, 0, -215148, -38410832] | [2] | 98304 | |
20160.i2 | 20160bf2 | [0, 0, 0, -13548, -590672] | [2, 2] | 49152 | |
20160.i3 | 20160bf1 | [0, 0, 0, -2028, 22192] | [2] | 24576 | \(\Gamma_0(N)\)-optimal |
20160.i4 | 20160bf4 | [0, 0, 0, 3732, -1993808] | [2] | 98304 |
Rank
sage: E.rank()
The elliptic curves in class 20160.i have rank \(0\).
Complex multiplication
The elliptic curves in class 20160.i do not have complex multiplication.Modular form 20160.2.a.i
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.