# Properties

 Label 20160.da Number of curves $6$ Conductor $20160$ CM no Rank $1$ Graph

# Related objects

Show commands for: SageMath
sage: E = EllipticCurve("20160.da1")

sage: E.isogeny_class()

## Elliptic curves in class 20160.da

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
20160.da1 20160cd5 [0, 0, 0, -377292, 89197936] [2] 131072
20160.da2 20160cd3 [0, 0, 0, -24492, 1280176] [2, 2] 65536
20160.da3 20160cd2 [0, 0, 0, -6492, -181424] [2, 2] 32768
20160.da4 20160cd1 [0, 0, 0, -6312, -193016] [2] 16384 $$\Gamma_0(N)$$-optimal
20160.da5 20160cd4 [0, 0, 0, 8628, -901136] [2] 65536
20160.da6 20160cd6 [0, 0, 0, 40308, 6904816] [2] 131072

## Rank

sage: E.rank()

The elliptic curves in class 20160.da have rank $$1$$.

## Modular form 20160.2.a.da

sage: E.q_eigenform(10)

$$q + q^{5} - q^{7} - 4q^{11} + 2q^{13} - 2q^{17} + 4q^{19} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the LMFDB numbering.

$$\left(\begin{array}{rrrrrr} 1 & 2 & 4 & 8 & 8 & 4 \\ 2 & 1 & 2 & 4 & 4 & 2 \\ 4 & 2 & 1 & 2 & 2 & 4 \\ 8 & 4 & 2 & 1 & 4 & 8 \\ 8 & 4 & 2 & 4 & 1 & 8 \\ 4 & 2 & 4 & 8 & 8 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with LMFDB labels.