Show commands: Magma / Pari/GP / SageMath

## Minimal Weierstrass equation

sage: E = EllipticCurve([1, -1, 0, -32586, -1629433])

gp: E = ellinit([1, -1, 0, -32586, -1629433])

magma: E := EllipticCurve([1, -1, 0, -32586, -1629433]);

$$y^2+xy=x^3-x^2-32586x-1629433$$ ## Mordell-Weil group structure

$$\Z\times \Z/{2}\Z \times \Z/{2}\Z$$

### Infinite order Mordell-Weil generator and height

sage: E.gens()

magma: Generators(E);

 $$P$$ = $$\left(\frac{1891}{4}, \frac{73349}{8}\right)$$ $$\hat{h}(P)$$ ≈ $4.8362377933605719332219127099$

## Torsion generators

sage: E.torsion_subgroup().gens()

gp: elltors(E)

magma: TorsionSubgroup(E);

$$\left(-146, 73\right)$$, $$\left(202, -101\right)$$ ## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

$$\left(-146, 73\right)$$, $$\left(202, -101\right)$$ ## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)  magma: Conductor(E); Conductor: $$20097$$ = $$3^{2} \cdot 7 \cdot 11 \cdot 29$$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $$1056045194928801$$ = $$3^{6} \cdot 7^{6} \cdot 11^{4} \cdot 29^{2}$$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$\frac{5249244962308257}{1448621666569}$$ = $$3^{3} \cdot 7^{-6} \cdot 11^{-4} \cdot 19^{3} \cdot 29^{-2} \cdot 3049^{3}$$ Endomorphism ring: $$\Z$$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) Sato-Tate group: $\mathrm{SU}(2)$ Faltings height: $$1.5902552647873218448976442125\dots$$ Stable Faltings height: $$1.0409491204532669992000215940\dots$$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Analytic rank: $$1$$ sage: E.regulator()  magma: Regulator(E); Regulator: $$4.8362377933605719332219127099\dots$$ sage: E.period_lattice().omega()  gp: E.omega  magma: RealPeriod(E); Real period: $$0.36272463362309874917084583426\dots$$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[i,1],gr[i]] | i<-[1..#gr[,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $$64$$  = $$2^{2}\cdot2\cdot2^{2}\cdot2$$ sage: E.torsion_order()  gp: elltors(E)  magma: Order(TorsionSubgroup(E)); Torsion order: $$4$$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $$1$$ (exact)

## Modular invariants

Modular form 20097.2.a.l

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy)/(2*xy+E.a1*xy+E.a3)

magma: ModularForm(E);

$$q + q^{2} - q^{4} + 2q^{5} - q^{7} - 3q^{8} + 2q^{10} + q^{11} + 6q^{13} - q^{14} - q^{16} + 2q^{17} - 8q^{19} + O(q^{20})$$ For more coefficients, see the Downloads section to the right.

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 86016 $$\Gamma_0(N)$$-optimal: no Manin constant: 1

#### Special L-value

sage: r = E.rank();

sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()

gp: ar = ellanalyticrank(E);

gp: ar/factorial(ar)

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

$$L'(E,1)$$ ≈ $$7.0168903268435880435350510131676837526$$

## Local data

This elliptic curve is not semistable. There are 4 primes of bad reduction:

sage: E.local_data()

gp: ellglobalred(E)

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$3$$ $$4$$ $$I_0^{*}$$ Additive -1 2 6 0
$$7$$ $$2$$ $$I_{6}$$ Non-split multiplicative 1 1 6 6
$$11$$ $$4$$ $$I_{4}$$ Split multiplicative -1 1 4 4
$$29$$ $$2$$ $$I_{2}$$ Non-split multiplicative 1 1 2 2

## Galois representations

The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X8.

This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^1\Z_2)$ generated by  and has index 6.

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ except those listed.

prime Image of Galois representation
$$2$$ Cs

## $p$-adic data

### $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]

$$p$$-adic regulators are not yet computed for curves that are not $$\Gamma_0$$-optimal.

## Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 ordinary add ordinary nonsplit split ordinary ordinary ordinary ss nonsplit ordinary ordinary ordinary ordinary ordinary 4 - 1 1 2 1 3 1 1,1 1 1 1 1 1 1 0 - 0 0 0 0 0 0 0,0 0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

## Isogenies

This curve has non-trivial cyclic isogenies of degree $$d$$ for $$d=$$ 2.
Its isogeny class 20097h consists of 2 curves linked by isogenies of degrees dividing 4.

## Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \times \Z/{2}\Z$ are as follows:

 $[K:\Q]$ $E(K)_{\rm tors}$ Base change curve $K$ $4$ $$\Q(\sqrt{21}, \sqrt{87})$$ $$\Z/2\Z \times \Z/4\Z$$ Not in database $4$ $$\Q(\sqrt{3}, \sqrt{-7})$$ $$\Z/2\Z \times \Z/4\Z$$ Not in database $4$ $$\Q(\sqrt{-3}, \sqrt{29})$$ $$\Z/2\Z \times \Z/4\Z$$ Not in database $8$ 8.2.22647043551627.3 $$\Z/2\Z \times \Z/6\Z$$ Not in database $16$ Deg 16 $$\Z/4\Z \times \Z/4\Z$$ Not in database $16$ Deg 16 $$\Z/2\Z \times \Z/8\Z$$ Not in database $16$ Deg 16 $$\Z/2\Z \times \Z/8\Z$$ Not in database $16$ Deg 16 $$\Z/2\Z \times \Z/8\Z$$ Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.