# Properties

 Label 20097.d1 Conductor $20097$ Discriminant $-2484531819$ j-invariant $$-\frac{74246873427}{92019697}$$ CM no Rank $2$ Torsion structure trivial

# Related objects

Show commands for: Magma / Pari/GP / SageMath

## Minimal Weierstrass equation

sage: E = EllipticCurve([1, -1, 1, -263, 2970])

gp: E = ellinit([1, -1, 1, -263, 2970])

magma: E := EllipticCurve([1, -1, 1, -263, 2970]);

$$y^2+xy+y=x^3-x^2-263x+2970$$

## Mordell-Weil group structure

$$\Z^2$$

### Infinite order Mordell-Weil generators and heights

sage: E.gens()

magma: Generators(E);

 $$P$$ = $$\left(14, 36\right)$$ $$\left(72, 558\right)$$ $$\hat{h}(P)$$ ≈ $0.27850024126054372313510547420$ $2.1125035487288542068041215837$

## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

$$\left(-15, 65\right)$$, $$\left(-15, -51\right)$$, $$\left(0, 54\right)$$, $$\left(0, -55\right)$$, $$\left(2, 48\right)$$, $$\left(2, -51\right)$$, $$\left(5, 39\right)$$, $$\left(5, -45\right)$$, $$\left(14, 36\right)$$, $$\left(14, -51\right)$$, $$\left(72, 558\right)$$, $$\left(72, -631\right)$$, $$\left(924, 27609\right)$$, $$\left(924, -28534\right)$$

## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor: $$20097$$ = $$3^{2} \cdot 7 \cdot 11 \cdot 29$$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $$-2484531819$$ = $$-1 \cdot 3^{3} \cdot 7^{3} \cdot 11 \cdot 29^{3}$$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$-\frac{74246873427}{92019697}$$ = $$-1 \cdot 3^{6} \cdot 7^{-3} \cdot 11^{-1} \cdot 29^{-3} \cdot 467^{3}$$ Endomorphism ring: $$\Z$$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) Sato-Tate group: $\mathrm{SU}(2)$ Faltings height: $$0.49625209007012768831786771464\dots$$ Stable Faltings height: $$0.22159901790310026546905640541\dots$$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Analytic rank: $$2$$ sage: E.regulator()  magma: Regulator(E); Regulator: $$0.58721931691418328409404070834\dots$$ sage: E.period_lattice().omega()  gp: E.omega[1]  magma: RealPeriod(E); Real period: $$1.3088814806600548806497595891\dots$$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $$6$$  = $$2\cdot1\cdot1\cdot3$$ sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E)); Torsion order: $$1$$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $$1$$ (rounded)

## Modular invariants

Modular form 20097.2.a.d

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

magma: ModularForm(E);

$$q - q^{2} - q^{4} - q^{5} - q^{7} + 3q^{8} + q^{10} - q^{11} + q^{13} + q^{14} - q^{16} - 7q^{17} + O(q^{20})$$

For more coefficients, see the Downloads section to the right.

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 7488 $$\Gamma_0(N)$$-optimal: yes Manin constant: 1

#### Special L-value

sage: r = E.rank();

sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()

gp: ar = ellanalyticrank(E);

gp: ar[2]/factorial(ar[1])

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

$$L^{(2)}(E,1)/2!$$ ≈ $$4.6116029339689333561037583687644432566$$

## Local data

This elliptic curve is not semistable. There are 4 primes of bad reduction:

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$3$$ $$2$$ $$III$$ Additive 1 2 3 0
$$7$$ $$1$$ $$I_{3}$$ Non-split multiplicative 1 1 3 3
$$11$$ $$1$$ $$I_{1}$$ Non-split multiplicative 1 1 1 1
$$29$$ $$3$$ $$I_{3}$$ Split multiplicative -1 1 3 3

## Galois representations

The 2-adic representation attached to this elliptic curve is surjective.

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ .

## $p$-adic data

### $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]

Note: $$p$$-adic regulator data only exists for primes $$p\ge 5$$ of good ordinary reduction.

## Iwasawa invariants

 $p$ Reduction type $\lambda$-invariant(s) $\mu$-invariant(s) 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 ordinary add ordinary nonsplit nonsplit ordinary ordinary ss ordinary split ordinary ordinary ordinary ordinary ordinary 2 - 4 2 2 2 2 2,2 2 3 2 2 2 2 2 0 - 0 0 0 0 0 0,0 0 0 0 0 0 0 0

An entry - indicates that the invariants are not computed because the reduction is additive.

## Isogenies

This curve has no rational isogenies. Its isogeny class 20097.d consists of this curve only.

## Growth of torsion in number fields

The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:

 $[K:\Q]$ $E(K)_{\rm tors}$ Base change curve $K$ $3$ 3.1.6699.1 $$\Z/2\Z$$ Not in database $6$ 6.0.300628350099.1 $$\Z/2\Z \times \Z/2\Z$$ Not in database $8$ 8.2.32019867.2 $$\Z/3\Z$$ Not in database $12$ Deg 12 $$\Z/4\Z$$ Not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.