Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3-x^2+1035x-15147\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3-x^2z+1035xz^2-15147z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3+16557x-952850\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(51/4, -51/8)$ | $0$ | $2$ |
Integral points
None
Invariants
Conductor: | $N$ | = | \( 198 \) | = | $2 \cdot 3^{2} \cdot 11$ |
|
Discriminant: | $\Delta$ | = | $-166676903712$ | = | $-1 \cdot 2^{5} \cdot 3^{16} \cdot 11^{2} $ |
|
j-invariant: | $j$ | = | \( \frac{168105213359}{228637728} \) | = | $2^{-5} \cdot 3^{-10} \cdot 11^{-2} \cdot 5519^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.83901404479352497122113466667$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.28970790045947012552351204821$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.1002106061618209$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $6.191027178841596$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.54287068322555320085312044808$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 8 $ = $ 1\cdot2^{2}\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L(E,1)$ | ≈ | $1.0857413664511064017062408962 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 1.085741366 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.542871 \cdot 1.000000 \cdot 8}{2^2} \\ & \approx 1.085741366\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 320 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $1$ | $I_{5}$ | nonsplit multiplicative | 1 | 1 | 5 | 5 |
$3$ | $4$ | $I_{10}^{*}$ | additive | -1 | 2 | 16 | 10 |
$11$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 8.6.0.5 |
$5$ | 5B.4.1 | 5.12.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1320 = 2^{3} \cdot 3 \cdot 5 \cdot 11 \), index $288$, genus $5$, and generators
$\left(\begin{array}{rr} 1301 & 20 \\ 1300 & 21 \end{array}\right),\left(\begin{array}{rr} 1201 & 6 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 6 & 13 \\ 575 & 1136 \end{array}\right),\left(\begin{array}{rr} 1 & 20 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 10 \\ 10 & 101 \end{array}\right),\left(\begin{array}{rr} 531 & 20 \\ 1300 & 1187 \end{array}\right),\left(\begin{array}{rr} 11 & 16 \\ 1080 & 971 \end{array}\right),\left(\begin{array}{rr} 666 & 5 \\ 385 & 46 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 20 & 1 \end{array}\right),\left(\begin{array}{rr} 439 & 1314 \\ 0 & 1319 \end{array}\right)$.
The torsion field $K:=\Q(E[1320])$ is a degree-$1622016000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1320\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | nonsplit multiplicative | $4$ | \( 9 = 3^{2} \) |
$3$ | additive | $8$ | \( 22 = 2 \cdot 11 \) |
$5$ | good | $2$ | \( 99 = 3^{2} \cdot 11 \) |
$11$ | nonsplit multiplicative | $12$ | \( 18 = 2 \cdot 3^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 5 and 10.
Its isogeny class 198e
consists of 4 curves linked by isogenies of
degrees dividing 10.
Twists
The minimal quadratic twist of this elliptic curve is 66c2, its twist by $-3$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-2}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | 2.0.8.1-19602.8-a6 |
$2$ | \(\Q(\sqrt{-3}) \) | \(\Z/10\Z\) | 2.0.3.1-1452.1-b2 |
$4$ | 4.2.34848.1 | \(\Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{-2}, \sqrt{-3})\) | \(\Z/2\Z \oplus \Z/10\Z\) | not in database |
$8$ | 8.0.41108373504.17 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.77720518656.15 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.2.41497747632.3 | \(\Z/6\Z\) | not in database |
$8$ | 8.0.1214383104.2 | \(\Z/20\Z\) | not in database |
$16$ | deg 16 | \(\Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/20\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/20\Z\) | not in database |
$16$ | deg 16 | \(\Z/30\Z\) | not in database |
$20$ | 20.4.82802905234194108120391845703125.1 | \(\Z/10\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 11 |
---|---|---|---|---|
Reduction type | nonsplit | add | ord | nonsplit |
$\lambda$-invariant(s) | 1 | - | 0 | 0 |
$\mu$-invariant(s) | 1 | - | 0 | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 7$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.