Properties

Label 198744df
Number of curves $2$
Conductor $198744$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("df1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 198744df have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(7\)\(1\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 2 T + 5 T^{2}\) 1.5.ac
\(11\) \( 1 + 6 T + 11 T^{2}\) 1.11.g
\(17\) \( 1 + 8 T + 17 T^{2}\) 1.17.i
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 - 2 T + 23 T^{2}\) 1.23.ac
\(29\) \( 1 - 10 T + 29 T^{2}\) 1.29.ak
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 198744df do not have complex multiplication.

Modular form 198744.2.a.df

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - 4 q^{5} + q^{9} + 2 q^{11} + 4 q^{15} + 6 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 198744df

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
198744.c2 198744df1 \([0, -1, 0, 38645, -9362744]\) \(702464/4563\) \(-41458998353009328\) \([2]\) \(2322432\) \(1.8704\) \(\Gamma_0(N)\)-optimal
198744.c1 198744df2 \([0, -1, 0, -499620, -123474924]\) \(94875856/9477\) \(1377714406807694592\) \([2]\) \(4644864\) \(2.2170\)