Properties

Label 198744bs
Number of curves $2$
Conductor $198744$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bs1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 198744bs have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(7\)\(1\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 4 T + 5 T^{2}\) 1.5.ae
\(11\) \( 1 - 2 T + 11 T^{2}\) 1.11.ac
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 - T + 19 T^{2}\) 1.19.ab
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 198744bs do not have complex multiplication.

Modular form 198744.2.a.bs

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + q^{9} + 2 q^{11} + 6 q^{17} - 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 198744bs

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
198744.x2 198744bs1 \([0, -1, 0, -85487523, -312277757364]\) \(-7604375980288000/236743082667\) \(-2151025876479838743573552\) \([2]\) \(30965760\) \(3.4458\) \(\Gamma_0(N)\)-optimal
198744.x1 198744bs2 \([0, -1, 0, -1377861788, -19685484939420]\) \(1989996724085074000/1843096437\) \(267939275550367251946752\) \([2]\) \(61931520\) \(3.7923\)