Properties

Label 1960i
Number of curves $1$
Conductor $1960$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("i1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 1960i

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1960.a1 1960i1 \([0, 1, 0, -11776, 568224]\) \(-15298178/3125\) \(-36894726400000\) \([]\) \(5040\) \(1.3255\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 1960i1 has rank \(0\).

Complex multiplication

The elliptic curves in class 1960i do not have complex multiplication.

Modular form 1960.2.a.i

sage: E.q_eigenform(10)
 
\(q - 2 q^{3} - q^{5} + q^{9} - q^{11} - 3 q^{13} + 2 q^{15} - 2 q^{17} - 5 q^{19} + O(q^{20})\)  Toggle raw display