Properties

Label 1960f
Number of curves $1$
Conductor $1960$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("f1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 1960f

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1960.k1 1960f1 \([0, 1, 0, -65, -1597]\) \(-1024/35\) \(-1054135040\) \([]\) \(768\) \(0.41162\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 1960f1 has rank \(1\).

Complex multiplication

The elliptic curves in class 1960f do not have complex multiplication.

Modular form 1960.2.a.f

sage: E.q_eigenform(10)
 
\(q + q^{3} + q^{5} - 2 q^{9} - 5 q^{11} - q^{13} + q^{15} - 3 q^{17} + 6 q^{19} + O(q^{20})\)  Toggle raw display