Properties

Label 1960.i
Number of curves $1$
Conductor $1960$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("i1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 1960.i

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1960.i1 1960h1 \([0, 1, 0, -16, -176]\) \(-196/5\) \(-12293120\) \([]\) \(288\) \(0.040994\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 1960.i1 has rank \(0\).

Complex multiplication

The elliptic curves in class 1960.i do not have complex multiplication.

Modular form 1960.2.a.i

sage: E.q_eigenform(10)
 
\(q + q^{3} - q^{5} - 2 q^{9} + 2 q^{11} - q^{15} + 4 q^{17} - 2 q^{19} + O(q^{20})\)  Toggle raw display