Properties

Label 1960.f
Number of curves $1$
Conductor $1960$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("f1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 1960.f

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1960.f1 1960g1 \([0, -1, 0, 215, 3725]\) \(12459008/78125\) \(-6860000000\) \([]\) \(896\) \(0.56924\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 1960.f1 has rank \(1\).

Complex multiplication

The elliptic curves in class 1960.f do not have complex multiplication.

Modular form 1960.2.a.f

sage: E.q_eigenform(10)
 
\(q - q^{3} + q^{5} - 2 q^{9} + 3 q^{11} + q^{13} - q^{15} - 5 q^{17} - 6 q^{19} + O(q^{20})\) Copy content Toggle raw display