Properties

Label 1960.d
Number of curves $1$
Conductor $1960$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("d1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 1960.d

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1960.d1 1960m1 \([0, -1, 0, -5945, -174803]\) \(-2249728/5\) \(-51652616960\) \([]\) \(2688\) \(0.93840\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 1960.d1 has rank \(0\).

Complex multiplication

The elliptic curves in class 1960.d do not have complex multiplication.

Modular form 1960.2.a.d

sage: E.q_eigenform(10)
 
\(q - q^{3} + q^{5} - 2 q^{9} - 5 q^{11} - 7 q^{13} - q^{15} + 3 q^{17} + 2 q^{19} + O(q^{20})\)  Toggle raw display