Properties

Label 1960.c
Number of curves $1$
Conductor $1960$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("c1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 1960.c

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1960.c1 1960a1 \([0, -1, 0, 1944, -204644]\) \(137564/3125\) \(-18447363200000\) \([]\) \(3360\) \(1.2257\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 1960.c1 has rank \(1\).

Complex multiplication

The elliptic curves in class 1960.c do not have complex multiplication.

Modular form 1960.2.a.c

sage: E.q_eigenform(10)
 
\(q - q^{3} - q^{5} - 2 q^{9} - 2 q^{11} + 4 q^{13} + q^{15} + 6 q^{19} + O(q^{20})\)  Toggle raw display