Show commands for:
SageMath
sage: E = EllipticCurve("ce1")
sage: E.isogeny_class()
Elliptic curves in class 195195ce
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
195195.cd2 | 195195ce1 | [0, 1, 1, -1510916, 836633165] | [] | 11520000 | \(\Gamma_0(N)\)-optimal |
195195.cd1 | 195195ce2 | [0, 1, 1, -4527566, -70104469795] | [] | 57600000 |
Rank
sage: E.rank()
The elliptic curves in class 195195ce have rank \(0\).
Complex multiplication
The elliptic curves in class 195195ce do not have complex multiplication.Modular form 195195.2.a.ce
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 5 \\ 5 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.