Show commands:
SageMath
E = EllipticCurve("y1")
E.isogeny_class()
Elliptic curves in class 1950.y
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
1950.y1 | 1950w3 | \([1, 0, 0, -12088, -512458]\) | \(12501706118329/2570490\) | \(40163906250\) | \([2]\) | \(3072\) | \(1.0318\) | |
1950.y2 | 1950w2 | \([1, 0, 0, -838, -6208]\) | \(4165509529/1368900\) | \(21389062500\) | \([2, 2]\) | \(1536\) | \(0.68518\) | |
1950.y3 | 1950w1 | \([1, 0, 0, -338, 2292]\) | \(273359449/9360\) | \(146250000\) | \([4]\) | \(768\) | \(0.33860\) | \(\Gamma_0(N)\)-optimal |
1950.y4 | 1950w4 | \([1, 0, 0, 2412, -41958]\) | \(99317171591/106616250\) | \(-1665878906250\) | \([2]\) | \(3072\) | \(1.0318\) |
Rank
sage: E.rank()
The elliptic curves in class 1950.y have rank \(0\).
Complex multiplication
The elliptic curves in class 1950.y do not have complex multiplication.Modular form 1950.2.a.y
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.