Properties

Label 1950.x
Number of curves $1$
Conductor $1950$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("x1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 1950.x

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1950.x1 1950z1 \([1, 0, 0, 2, 2]\) \(34295/78\) \(-1950\) \([]\) \(168\) \(-0.68462\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 1950.x1 has rank \(0\).

Complex multiplication

The elliptic curves in class 1950.x do not have complex multiplication.

Modular form 1950.2.a.x

sage: E.q_eigenform(10)
 
\(q + q^{2} + q^{3} + q^{4} + q^{6} - 4q^{7} + q^{8} + q^{9} + 4q^{11} + q^{12} + q^{13} - 4q^{14} + q^{16} - 4q^{17} + q^{18} + 7q^{19} + O(q^{20})\)  Toggle raw display