Properties

Label 1950.w
Number of curves $4$
Conductor $1950$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("w1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 1950.w have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1 - T\)
\(5\)\(1\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 4 T + 7 T^{2}\) 1.7.e
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 + 8 T + 19 T^{2}\) 1.19.i
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 1950.w do not have complex multiplication.

Modular form 1950.2.a.w

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{3} + q^{4} + q^{6} - 4 q^{7} + q^{8} + q^{9} - 4 q^{11} + q^{12} - q^{13} - 4 q^{14} + q^{16} - 2 q^{17} + q^{18} - 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 1950.w

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1950.w1 1950v4 \([1, 0, 0, -518488, 143656592]\) \(986551739719628473/111045168\) \(1735080750000\) \([2]\) \(20480\) \(1.7728\)  
1950.w2 1950v3 \([1, 0, 0, -58488, -1851408]\) \(1416134368422073/725251155408\) \(11332049303250000\) \([2]\) \(20480\) \(1.7728\)  
1950.w3 1950v2 \([1, 0, 0, -32488, 2230592]\) \(242702053576633/2554695936\) \(39917124000000\) \([2, 2]\) \(10240\) \(1.4262\)  
1950.w4 1950v1 \([1, 0, 0, -488, 86592]\) \(-822656953/207028224\) \(-3234816000000\) \([2]\) \(5120\) \(1.0796\) \(\Gamma_0(N)\)-optimal