Properties

Label 1950.s
Number of curves $1$
Conductor $1950$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("s1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 1950.s

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1950.s1 1950s1 \([1, 1, 1, -224763, -43657719]\) \(-3214683778008145/238496514048\) \(-93162700800000000\) \([]\) \(19320\) \(2.0049\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 1950.s1 has rank \(0\).

Complex multiplication

The elliptic curves in class 1950.s do not have complex multiplication.

Modular form 1950.2.a.s

sage: E.q_eigenform(10)
 
\(q + q^{2} - q^{3} + q^{4} - q^{6} + q^{8} + q^{9} + 4q^{11} - q^{12} + q^{13} + q^{16} + q^{18} + q^{19} + O(q^{20})\)  Toggle raw display