Properties

Label 1950.p
Number of curves $1$
Conductor $1950$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("p1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 1950.p

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
1950.p1 1950r1 \([1, 1, 1, -20638, 1133531]\) \(-2488672890625/2426112\) \(-947700000000\) \([]\) \(5760\) \(1.2188\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 1950.p1 has rank \(1\).

Complex multiplication

The elliptic curves in class 1950.p do not have complex multiplication.

Modular form 1950.2.a.p

sage: E.q_eigenform(10)
 
\(q + q^{2} - q^{3} + q^{4} - q^{6} - q^{7} + q^{8} + q^{9} - 5q^{11} - q^{12} - q^{13} - q^{14} + q^{16} + 5q^{17} + q^{18} + O(q^{20})\)  Toggle raw display